Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Front Oncol ; 14: 1375906, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638850

RESUMO

Purpose: To explore the efficacy and safety of FOLFOXIRI plus cetuximab regimen as conversion therapy for patients with unresectable RAS/BRAF wild-type colorectal liver-limited metastases (CLM). Patients and methods: This was a dual-center, phase II trial with the rate of no evidence of disease (NED) achieved as the primary endpoint. All enrolled patients with initially unresectable left-sided RAS/BRAF wild-type colorectal liver-limited metastases received a modified FOLFOXIRI plus cetuximab regimen as conversion therapy. Results: Between October 2019 and October 2021, fifteen patients were enrolled. Nine patients (60%) achieved NED. The overall response rate (ORR) was 92.9%, and the disease control rate (DCR) was 100%. The median relapse-free survival (RFS) was 9 (95% CI: 0-20.7) months. The median progression-free survival (PFS) was 13.0 months (95% CI: 5.7-20.5), and the median overall survival (OS) was not reached. The most frequently occurring grade 3-4 adverse events were neutropenia (20%), peripheral neurotoxicity (13.3%), diarrhea (6.7%), and rash acneiform (6.7%). Conclusion: The FOLFOXIRI plus cetuximab regimen displayed tolerable toxicity and promising anti-tumor activity in terms of the rate of NED achieved and response rate in patients with initially unresectable left-sided RAS/BRAF wild-type CLM. This regimen merits further investigation.

2.
Comput Methods Programs Biomed ; 250: 108191, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677079

RESUMO

BACKGROUND AND OBJECTIVE: Enhanced external counterpulsation (EECP) is a mechanically assisted circulation technique widely used in the rehabilitation and management of ischemic cardiovascular diseases. It contributes to cardiovascular functions by regulating the afterload of ventricle to improve hemodynamic effects, including increased diastolic blood pressure at aortic root, increased cardiac output and enhanced blood perfusion to multiple organs including coronary circulation. However, the effects of EECP on the coupling of the ventricle and the arterial system, termed ventricular-arterial coupling (VAC), remain elusive. We aimed to investigate the acute effect of EECP on the dynamic interaction between the left ventricle and its afterload of the arterial system from the perspective of ventricular output work. METHODS: A neural network assisted optimization algorithm was proposed to identify the ordinary differential equation (ODE) relation between aortic root blood pressure and flow rate. Based on the optimized order of ODE, a lumped parameter model (LPM) under EECP was developed taking into consideration of the simultaneous action of cardiac and EECP pressure sources. The ventricular output work, in terms of aortic pressure and flow rate cooperated with the LPM, was used to characterize the VAC of ventricle and its afterload. The VAC subjected to the principle of minimal ventricular output work was validated by solving the Euler-Poisson equation of cost function, ultimately determining the waveforms of aortic pressure and flow rate. RESULTS: A third-order ODE can precisely describe the hemodynamic relationship between aortic pressure and flow rate. An optimized dual-source LPM with three energy-storage elements has been constructed, showing the potential in probing VAC under EECP. The LPM simulation results demonstrated that the VAC in terms of aortic pressure and flow rate yielded to the minimal ventricular output work under different EECP pressures. CONCLUSIONS: The ventricular-arterial coupling under EECP is subjected to the minimal ventricular output work, which can serve as a criterion for determining aortic pressure and flow rate. This study provides insight for the understanding of VAC and has the potential in characterizing the performance of the ventricular and arterial system under EECP.


Assuntos
Algoritmos , Contrapulsação , Ventrículos do Coração , Hemodinâmica , Modelos Cardiovasculares , Humanos , Contrapulsação/métodos , Débito Cardíaco , Artérias/fisiologia , Pressão Sanguínea , Simulação por Computador , Aorta/fisiologia , Redes Neurais de Computação
3.
Front Oncol ; 14: 1357233, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529379

RESUMO

This case report details a patient with Pancreatic Acinar Cell Carcinoma (PACC), a rare malignancy with distinctive biological and imaging features. In the absence of standardized treatment protocols for PACC, we embarked on a diagnostic journey that led to the adoption of an innovative therapeutic regimen in our institution. A 45-year-old female patient presented with a pancreatic mass, which was histologically confirmed as PACC following a biopsy. Subsequent genomic profiling revealed a high tumor mutational burden (21.4/Mb), prompting the initiation of combined immunotherapy and targeted therapy. Notably, the patient experienced a unique adverse reaction to the immunotherapy-recurrent subcutaneous soft tissue nodules, particularly in the gluteal and lower limb regions, accompanied by pain, yet resolving spontaneously. Following six cycles of the dual therapy, radiological evaluations indicated a decrease in tumor size, leading to a successful surgical excision. Over a 20-month post-surgical follow-up, the patient showed no signs of disease recurrence. This narrative adds to the existing knowledge on PACC and highlights the potential efficacy of immunotherapy in managing this challenging condition, emphasizing the importance of close monitoring for any adverse reactions.

4.
IEEE Trans Biomed Eng ; PP2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536678

RESUMO

OBJECTIVE: Peripheral vascular disease is a worldwide leading health concern. Real-time peripheral hemoperfusion monitoring during treatment is essential to plan treatment strategies to improve circulatory enhancement effects. METHODS: The present work establishes a Janus flexible perfusion (JFP) sensor system for dynamic peripheral hemoperfusion monitoring. We develop a Janus structure design with different Young's modulus to improve the mechanical properties for motion artifacts suppression. Besides, we propose a peripheral perfusion index (PPI) to assess the peripheral hemoperfusion based on an optical perfusion model that is experimentally verified using an in-vitro model. The effectiveness of the system is assessed in three experimental scenarios, including motion artifact-robust test, induced vascular occlusion in upper limb, and peripheral hemoperfusion monitoring with the treatment of intermittent pneumatic compression (IPC), with comparison with Laser Doppler flowmetry (LDF). RESULTS: The noise level of the traditional rigid sensor is five times that of the JFP sensor within the effective signal frequency domain when there is movement. The PPI can effectively discriminate between different peripheral hemoperfusion states and has a correlation coefficient of 0.92 with the LDF mean values. The kappa statistic between the JFP sensor and LDF is 0.78, indicating substantial agreement between them to estimate the peripheral hemoperfusion improvements during IPC treatment. CONCLUSION: The sensor system we proposed can monitor peripheral hemoperfusion variation in real-time and is insensitive to motion artifacts. SIGNIFICANCE: The proposed sensing system provides a functional module for real-time estimation of peripheral hemoperfusion during clinical interventions.

5.
Cell Commun Signal ; 22(1): 178, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475787

RESUMO

BACKGROUND: Carthamus tinctorius L., a traditional herbal medicine used for atherosclerosis (AS), lacks a clear understanding of its therapeutic mechanisms. This study aimed to investigate the therapeutic effects and mechanisms of Carthamus tinctorius L.-derived nanovesicles (CDNVs) in AS treatment. METHODS: CDNVs were isolated and characterized using improved isolation methods. Transmission electron microscopy, nanoparticle tracking analysis, and protein analysis confirmed their morphology, size, and protein composition. Small RNA sequencing was performed to identify the miRNA profile of CDNVs, and bioinformatics analysis was used to determine their potential biological roles. In vivo biodistribution and toxicity studies were conducted in mice to assess the stability and safety of orally administered CDNVs. The anti-atherosclerotic effects of CDNVs were evaluated in ApoE-/- mice through plaque burden analysis. The protective effects of CDNVs on ox-LDL-treated endothelial cells were assessed through proliferation, apoptosis, reactive oxygen species activation, and monocyte adhesion assays. miRNA and mRNA sequencing of CDNV-treated endothelial cells were performed to explore their regulatory effects and potential target genes. RESULTS: CDNVs were successfully isolated and purified from Carthamus tinctorius L. tissue lysates. They exhibited a saucer-shaped or cup-shaped morphology, with an average particle size of 142.6 ± 0.7 nm, and expressed EV markers CD63 and TSG101. CDNVs contained proteins, small RNAs, and metabolites, including the therapeutic compound HSYA. Small RNA sequencing identified 95 miRNAs, with 10 common miRNAs accounting for 72.63% of the total miRNAs. These miRNAs targeted genes involved in cell adhesion, apoptosis, and cell proliferation, suggesting their relevance in cardiovascular disease. Orally administered CDNVs were stable in the gastrointestinal tract, absorbed into the bloodstream, and accumulated in the liver, lungs, heart, and aorta. They significantly reduced the burden of atherosclerotic plaques in ApoE-/- mice and exhibited superior effects compared to HSYA. In vitro studies demonstrated that CDNVs were taken up by HUVECs, promoted proliferation, attenuated ox-LDL-induced apoptosis and ROS activation, and reduced monocyte adhesion. CDNV treatment resulted in significant changes in miRNA and mRNA expression profiles of HUVECs, with enrichment in inflammation-related genes. CXCL12 was identified as a potential direct target of miR166a-3p. CONCLUSION: CDNVs isolated from Carthamus tinctorius L. tissue lysates represent a promising oral therapeutic option for cardiovascular diseases. The delivery of miRNAs by CDNVs regulates inflammation-related genes, including CXCL12, in HUVECs, suggesting their potential role in modulating endothelial inflammation. These findings provide valuable insights into the therapeutic potential of CDNVs and their miRNAs in cardiovascular disease.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Carthamus tinctorius , MicroRNAs , Camundongos , Animais , Células Endoteliais/metabolismo , Carthamus tinctorius/genética , Carthamus tinctorius/metabolismo , Doenças Cardiovasculares/metabolismo , Distribuição Tecidual , Camundongos Knockout para ApoE , MicroRNAs/genética , Aterosclerose/metabolismo , Inflamação/metabolismo , Apoptose , RNA Mensageiro/metabolismo , Apolipoproteínas E/metabolismo
6.
J Biomech ; 166: 112057, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38520934

RESUMO

Enhanced external counterpulsation (EECP) is a treatment and rehabilitation approach for ischemic diseases, including coronary artery disease. Its therapeutic benefits are primarily attributed to the improved blood circulation achieved through sequential mechanical compression of the lower extremities. However, despite the crucial role that hemodynamic effects in the lower extremity arteries play in determining the effectiveness of EECP treatment, most studies have focused on the diastole phase and ignored the systolic phase. In the present study, a novel siphon model (SM) was developed to investigate the interdependence of several hemodynamic parameters, including pulse wave velocity, femoral flow rate, the operation pressure of cuffs, and the mean blood flow changes in the femoral artery throughout EECP therapy. To verify the accuracy of the SM, we coupled the predicted afterload in the lower extremity arteries during deflation using SM with the 0D-1D patient-specific model. Finally, the simulation results were compared with clinical measurements obtained during EECP therapy to verify the applicability and accuracy of the SM, as well as the coupling method. The precision and reliability of the previously developed personalized approach were further affirmed in this study. The average waveform similarity coefficient between the simulation results and the clinical measurements during the rest state exceeded 90%. This work has the potential to enhance our understanding of the hemodynamic mechanisms involved in EECP treatment and provide valuable insights for clinical decision-making.


Assuntos
Contrapulsação , Análise de Onda de Pulso , Humanos , Reprodutibilidade dos Testes , Hemodinâmica , Extremidade Inferior , Contrapulsação/métodos
7.
Quant Imaging Med Surg ; 14(2): 1844-1859, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38415114

RESUMO

Background: Although atrial high-rate episode (AHRE) and atrial fibrillation (AF) cannot entirely be identical, recent studies suggest AHRE is linked to AF development and shares some characteristics with AF regarding thromboembolism. At present, there is still lack of predictive indicators for AHRE and diagnostic methods and clinical indicators for AHRE in patients without cardiac implantable electronic device (CIED). The aim of this study was thus to explore the relationship between AHRE and left atrial (LA) strain parameters with the goal of identifying high-risk populations of AHRE by LA strain characteristics. Methods: From February 2022 to May 2023, a total of 105 CIED patients were enrolled and divided into two groups based on whether AHRE had occurred: AHRE (-) group (n=65) and AHRE (+) group (n=40). Real-time three-dimensional echocardiography (RT-3DE) technique was used to obtain the LA time-volume curve. The collected dynamic images were analyzed on the Echopac 204 workstation to obtain the parameters of LA. The four-dimensional automatic LA quantitative analysis (4D Auto LAQ) technology was used to analyze the LA strain parameters: LA reservoir longitudinal strain (LASr), LA conduit longitudinal strain (LAScd), LA contraction longitudinal strain (LASct), LA reservoir circumferential strain (LASr-c), LA conduit circumferential strain (LAScd-c), LA contraction circumferential strain (LASct-c). Correlation analysis was carried out using Binary logistic regression analysis. The area under the receiver operating characteristic (ROC) curve (AUC) was used to evaluate the diagnostic performance of LASct in AHRE. Results: Body surface area (BSA) [odds ratio (OR) =8.34, 95% confidence interval (CI): 1.32-72.30, P=0.037], LASct (OR =1.20, 95% CI: 1.05-1.39, P=0.013) and LA end-systolic volume (LAESV) (OR =1.02, 95% CI: 1.00-1.04, P=0.023) were the influencing factors of AHRE. Only LASct (OR =1.18, 95% CI: 1.01-1.38, P=0.041) was found to be an independent influencing factor of AHRE. This result remained significant after adjusting for age, sex, hypertension, diabetes, and stroke history. The ROC curve showed that the cut-off for predicting AHRE was LASct =-4.125% with sensitivity of 37.5% and specificity of 87.7%. Conclusions: This cross-sectional study found that decreased LASct (absolute value) is an independent risk factor for the AHRE and has diagnostic efficacy in certain degree for the occurrence of AHRE.

8.
J Affect Disord ; 350: 608-617, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38218261

RESUMO

PURPOSE: To investigate the short-term efficacy of enhanced external counterpulsation (EECP) on chronic insomnia. METHODS: This is a pilot randomized, participant-blind, and sham-controlled study. Forty-six participants with chronic insomnia were randomly assigned in a 1:1 ratio to receive EECP or sham EECP intervention (total of 35 sessions with 45 min each). The primary outcome was Pittsburgh Sleep Quality Index (PSQI). The secondary outcomes included sleep diary, Hospital Anxiety and Depression Scale (HADS), Short-Form Health Survey (SF12), flow mediated dilation (FMD), serum biomarkers of melatonin, cortisol, interleukin-6, and high sensitivity C-reactive protein. Outcomes were assessed after treatment and at 3-month follow-up. RESULTS: The PSQI was significantly decreased in both EECP and sham groups after 35-session intervention (13.74 to 6.96 in EECP and 13.04 to 9.48 in sham), and EECP decreased PSQI more than sham EECP (p = 0.009). PSQI in two groups kept improved at 3-month follow-up. After treatment, the total sleep time, sleep efficiency, FMD value and SF12 mental component of EECP group were significantly improved, and group differences were found for these outcomes. At follow-up, total sleep time, sleep efficiency and SF12 mental component of EECP group remained improved, and group difference for SF12 mental component was found. Post-treatment and follow-up HADS-A significantly decreased in both groups, with no differences between groups. Post-treatment serum biomarkers showed no differences within and between groups. LIMITATION: Lack of objective sleep measurement. CONCLUSION: EECP could improve sleep quality and mental quality of life in chronic insomnia and the therapeutic effect maintained for 3 months.


Assuntos
Contrapulsação , Distúrbios do Início e da Manutenção do Sono , Humanos , Distúrbios do Início e da Manutenção do Sono/terapia , Qualidade do Sono , Qualidade de Vida , Projetos Piloto , Biomarcadores , Resultado do Tratamento
9.
J Diabetes Investig ; 15(5): 623-633, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38265170

RESUMO

AIMS: This study assessed diabetes (type 1 and type 2) mortality in China and globally from 1990 to 2019, predicting the next decade's trends. MATERIALS AND METHODS: Data came from the Global Burden of Disease (GBD) database. The annual percentage change (AAPC) in age-standardized mortality rates (ASMR) for diabetes (type 1 and type 2) during 1990-2019 was calculated. A Bayesian age-period-cohort (BAPC) model predicted diabetes (type 1 and type 2) mortality from 2020 to 2030. RESULTS: In China, type 1 diabetes deaths declined from 6,005 to 4,504 cases (AAPC -2.827), while type 2 diabetes deaths rose from 64,084 to 168,388 cases (AAPC -0.763) from 1990 to 2019. Globally, type 1 diabetes deaths increased from 55,417 to 78,236 cases (AAPC 0.223), and type 2 diabetes deaths increased from 606,407 to 1,472,934 cases (AAPC 0.365). Both China and global trends showed declining type 1 diabetes ASMR. However, female type 2 diabetes ASMR in China initially increased and then decreased, while males had a rebound trend. Peak type 1 diabetes deaths were in the 40-44 age group, and type 2 diabetes peaked in those over 70. BAPC predicted declining diabetes (type 1 and type 2) mortality burden in China and globally over the next 10 years. CONCLUSIONS: Type 2 diabetes mortality remained high in China and globally despite decreasing type 1 diabetes mortality over 30 years. Predictions suggest a gradual decrease in diabetes mortality over the next decade, highlighting the need for continued focus on type 2 diabetes prevention and treatment.


Assuntos
Teorema de Bayes , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Carga Global da Doença , Humanos , Diabetes Mellitus Tipo 2/mortalidade , China/epidemiologia , Masculino , Feminino , Diabetes Mellitus Tipo 1/mortalidade , Diabetes Mellitus Tipo 1/epidemiologia , Pessoa de Meia-Idade , Adulto , Idoso , Carga Global da Doença/tendências , Estudos de Coortes , Adulto Jovem , Adolescente , Criança , Saúde Global/estatística & dados numéricos , Previsões , Pré-Escolar
10.
JACC Basic Transl Sci ; 8(9): 1060-1077, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37791316

RESUMO

Hypoxia-induced endothelial cell death and impaired angiogenesis are the main pathophysiological features of critical limb ischemia. Mechanistically, proprotein convertase subtilisin/kexin type 9 (PCSK9) promoted Smac translocation from mitochondria to the cytoplasm. Inhibition of Smac release into the cytoplasm attenuated PCSK9-mediated hypoxia-induced pyroptosis. Functionally, PCSK9 overexpression impaired angiogenesis in vitro and reduced blood perfusion in mice with lower limb ischemia, but the effect was reversed by PCSK9 inhibition. This study demonstrates that PCSK9 aggravates pyroptosis by regulating Smac mitochondrion-cytoplasm translocation in the vascular endothelium, providing novel insights into PCSK9 as a potential therapeutic target in critical limb ischemia.

11.
J Biomech ; 160: 111820, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37778277

RESUMO

Intermittent pneumatic compression (IPC) therapy has been adopted in prevention and treatment of ischemic-related peripheral vascular diseases. The aim of this study is to provide an approach to personalize the compression strategy of IPC therapy for maximizing foot skin blood flow. In this study, we presented a method to predict the optimized compression mode (OCM) for each subject based on biomechanical features extracted from experimental data tested with multiple IPC modes. First, to demonstrate the blood flow enhancing effect by applying the personalized OCM, four IPC modes of different frequency settings were tested on a total of 24 subjects. The frequency settings were adjusted by deflating-waiting time, which was defined as the total time length from the start of cuff deflation to the start of next compression. The foot skin blood perfusion and IPC air cuff pressure were monitored during the experiments. The personalized OCM was defined as the certain IPC mode that has the highest blood perfusion augmentation (BPA). Compared with the rest stage blood perfusion, the personalized OCM settings resulted in >50% of augmentation for 75% of healthy subjects (maximum augmentation at 244%) and >20% augmentation for 75% of patients with diabetes (maximum augmentation at 180%). Second, for predicting the OCM, we establish a random forest model based on the features extracted from the experimental data. The binary classification resulted in acceptable prediction performance (AUC > 0.7). This study might inspire new IPC strategies for improving foot microcirculation.

12.
Int J Med Sci ; 20(7): 836-848, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324184

RESUMO

Atherosclerosis is a chronic, inflammatory disease characterized by a lipid-driven infiltration of inflammatory cells in large and medium arteries and is considered to be a major underlying cause of cardiovascular diseases. Cuproptosis, a novel form of cell death, is highly linked to mitochondrial metabolism and mediated by protein lipoylation. However, the clinical implication of cuproptosis-related genes (CRGs) in atherosclerosis remains unclear. In this study, genes collected from the GEO database intersected with CRGs were identified in atherosclerosis. GSEA, GO and KEGG pathway enrichment analyses were performed for functional annotation. Through the random forest algorithm and the construction of a protein-protein interaction (PPI) network, eight selected genes (LOXL2, SLC31A1, ATP7A, SLC31A2, COA6, UBE2D1, CP and SOD1) and a vital cuproptosis-related gene FDX1 were then further validated. Two independent datasets (GSE28829 (N = 29), GSE100927 (N = 104)) were collected to construct the signature of CRGs for validation in atherosclerosis. Consistently, the atherosclerosis plaques showed significantly higher expression of SLC31A1, SLC31A2 and lower expression of SOD1 than the normal intimae. The area under the curve (AUC) of SLC31A1, SLC31A2 and SOD1 performed well for the diagnostic validation in the two datasets. In conclusion, the cuproptosis-related gene signature could serve as a potential diagnostic biomarker for atherosclerosis and may offer novel insights into the treatment of cardiovascular diseases. Based on the hub genes, a competing endogenous RNA (ceRNA) network of lncRNA-miRNA-mRNA and a transcription factor regulation network were ultimately constructed to explore the possible regulatory mechanism in atherosclerosis.


Assuntos
Apoptose , Aterosclerose , Doenças Cardiovasculares , Placa Aterosclerótica , Humanos , Aterosclerose/diagnóstico , Aterosclerose/genética , Biomarcadores , Proteínas de Transporte , Proteínas Mitocondriais , Superóxido Dismutase-1 , Cobre
13.
Curr Med Chem ; 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37282653

RESUMO

INTRODUCTION: The association between obesity and atrial fibrillation (AF) incidence in heart failure with preserved ejection fraction (HFpEF) patients is currently unclear. Our analyses and results are based on the whole Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist (TOPCAT) trial (placebo and spironolactone). METHOD: A total of 2138 subjects without baseline AF were included in the trial. Kaplan-Meier (K-M) curves and Cox regression with hazard ratios (HRs) and confidence intervals (CIs) were used to assess the incidence of AF with obesity. Of 2138 HFpEF patients without baseline AF, 1165 were obese (body mass index [BMI]≥30 kg/m2). RESULT: The K-M curve showed obese patients developed AF more than overweight (25≤ BMI ≤29.9 kg/m2) patients (p=0.013), confirmed by multivariable analysis, while there's no statistical difference between overweight and normal weight (18.5≤ BMI ≤24.9 kg/m2) patients. The occurrence of AF increased by 3% for every kg/m2 increase in BMI (adjusted HR, aHR: 1.03; 95% CI: 1.00-1.06), with a positive linear association (p for nonlinear: 0.145). Obesity was associated with AF incidence (aHR: 1.62; 95% CI: 1.05-2.50) compared with non-obesity (including overweight and normal-weight patients). CONCLUSION: Abdominal obesity was associated with increased AF incidence (aHR: 1.70; 95% CI: 1.04-2.77), and AF incidence rose by 18% per centimeter in circumference (aHR: 1.18; 95% CI: 1.04-1.34). Obesity and abdominal obesity increase the incidence of AF in HFpEF patients. Further studies need to determine whether there is a difference in AF in response to spironolactone across obese HFpEF pheno groups.

14.
Biochem Biophys Res Commun ; 670: 36-46, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37271038

RESUMO

Physiological high shear stress (HSS), a frictional force generated by flowing blood, is essential for endothelial homeostasis under normal physiological conditions. HSS suppresses atherosclerosis by inhibiting endothelial inflammation. However, the molecular mechanisms underlying this process have not been fully elucidated. Here, we report that HSS downregulated the mRNA and protein levels of ras homolog family member J (RHOJ) in endothelial cells (ECs). Silencing endogenous RHOJ expression decreased the mRNA and protein levels of proinflammatory vascular cell adhesion molecule 1 (VCAM-1) and intercellular cell adhesion molecule 1 (ICAM-1) in ECs, leading to a reduction in monocyte adhesion to ECs. Conversely, the overexpression of RHOJ had the opposite effect. RNA-sequencing analysis uncovered several differentially expressed genes (such as yes-associated protein 1 (YAP1),heme oxygenase-1 (HO1), and monocyte chemoattractant protein-1 (MCP1)) and pathways (such as nuclear factor-kappa B (NF-κB), fluid shear stress and atherosclerosis, and cell adhesion pathways) as RHOJ targets. Additionally, HSS was observed to alleviate endothelial inflammation by inhibiting RHOJ expression. Finally, methylated RNA immunoprecipitation sequencing (MeRIP-seq) illustrated that fluid shear stress regulates RHOJ expression in an N6-methyladenosine (m6A)-dependent manner. Mechanistically, the RNA m6A writer, methyltransferase 3 (METTL3), and the RNA m6A readers, YTH N6-methyladenosine RNA-binding protein F 3 (YTHDF3) and YTH N6-methyladenosine RNA-binding protein C 1/2 (YTHDC1/2), are involved in this process. Taken together, our data demonstrate that HSS-induced downregulation of RHOJ contributes to endothelial homeostasis by suppressing endothelial inflammation and that RHOJ inhibition in ECs is a promising therapeutic strategy for endothelial dysfunction.


Assuntos
Aterosclerose , Células Endoteliais , Humanos , Células Endoteliais/metabolismo , Inflamação/genética , Inflamação/metabolismo , RNA/metabolismo , RNA Mensageiro/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Proteínas de Ligação a RNA/metabolismo , Metiltransferases/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
15.
Atherosclerosis ; 369: 17-26, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36863196

RESUMO

BACKGROUND AND AIMS: Acute coronary syndrome caused by vulnerable plaque rupture or erosion is a leading cause of death worldwide. CD40 has been reported to be highly expressed in atherosclerotic plaques and closely related to plaque stability. Therefore, CD40 is expected to be a potential target for the molecular imaging of vulnerable plaques in atherosclerosis. We aimed to design a CD40-targeted magnetic resonance imaging (MRI)/optical multimodal molecular imaging probe and explore its ability to detect and target vulnerable atherosclerotic plaques. METHODS: CD40-Cy5.5 superparamagnetic iron oxide nanoparticles (CD40-Cy5.5-SPIONs), which comprise a CD40-targeting multimodal imaging contrast agent, were constructed by conjugating CD40 antibody and Cy5.5-N-hydroxysuccinimide ester with SPIONs. During this in vitro study, we observed the binding ability of CD40-Cy5.5-SPIONs with RAW 264.7 cells and mouse aortic vascular smooth muscle cells (MOVAS) after different treatments, using confocal fluorescence microscopy and Prussian blue staining. An in vivo study involving ApoE-/- mice fed a high-fat diet for 24-28 weeks was performed. 24 h after intravenous injection of CD40-Cy5.5-SPIONs, fluorescence imaging and MRI were performed. RESULTS: CD40-Cy5.5-SPIONs bind specifically to tumor necrosis factor (TNF)-α-treated macrophages and smooth muscle cells. Fluorescence imaging results showed that, compared with the control group and the atherosclerosis group injected with non-specific bovine serum albumin (BSA)-Cy5.5-SPIONs, the atherosclerotic group injected with CD40-Cy5.5-SPIONs had a stronger fluorescence signal. T2-weighted images showed that the carotid arteries of atherosclerotic mice injected with CD40-Cy5.5-SPIONs had a significant substantial T2 contrast enhancement effect. CONCLUSIONS: CD40-Cy5.5-SPIONs could potentially serve as an effective MRI/optical probe for vulnerable atherosclerotic plaques during non-invasive detection.


Assuntos
Aterosclerose , Nanopartículas de Magnetita , Nanopartículas , Placa Aterosclerótica , Animais , Camundongos , Placa Aterosclerótica/metabolismo , Meios de Contraste/farmacologia , Meios de Contraste/química , Aterosclerose/metabolismo , Imageamento por Ressonância Magnética/métodos , Imagem Molecular , Nanopartículas/química
16.
Front Cardiovasc Med ; 10: 1115494, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937941

RESUMO

Objective: This study aimed to investigate the therapeutic effect of enhanced external counterpulsation (EECP) on radial artery occlusion (RAO) through the oscillatory shear (OS) and pulsatile shear (PS) models of human umbilical vein endothelial cells (HUVECs) and RAO dog models. Methods: We used high-throughput sequencing data GSE92506 in GEO database to conduct time-series analysis of functional molecules on OS intervened HUVECs, and then compared the different molecules and their functions between PS and OS. Additionally, we studied the effect of EECP on the radial artery hemodynamics in Labrador dogs through multi-channel physiological monitor. Finally, we studied the therapeutic effect of EECP on RAO at the histological level through Hematoxylin-Eosin staining, Masson staining, ATPase staining and immunofluorescence in nine Labrador dogs. Results: With the extension of OS intervention, the cell cycle decreased, blood vessel endothelial cell proliferation and angiogenesis responses of HUVECs were down-regulated. By contrast, the inflammation and oxidative stress responses and the related pathways of anaerobic metabolism of HUVECs were up-regulated. Additionally, we found that compared with OS, PS can significantly up-regulate muscle synthesis, angiogenesis, and NO production related molecules. Meanwhile, PS can significantly down-regulate inflammation and oxidative stress related molecules. The invasive arterial pressure monitoring showed that 30Kpa EECP treatment could significantly increase the radial artery peak pressure (p = 0.030, 95%CI, 7.236-82.524). Masson staining showed that RAO significantly increased muscle interstitial fibrosis (p = 0.002, 95%CI, 0.748-2.128), and EECP treatment can reduce this change (p = 0.011, 95%CI, -1.676 to -0.296). ATPase staining showed that RAO significantly increased the area of type II muscle fibers (p = 0.004, 95%CI, 7.181-25.326), and EECP treatment could reduce this change (p = 0.001, 95%CI, -29.213 to -11.069). In addition, immunofluorescence showed that EECP increased angiogenesis in muscle tissue (p = 0.035, 95%CI, 0.024-0.528). Conclusion: EECP improves interstitial fibrosis and hypoxia, and increases angiogenesis of muscle tissue around radial artery induced by RAO.

17.
Toxicol Lett ; 372: 14-24, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36273635

RESUMO

The pathophysiology of renal lipid toxicity caused by excess adiposity is not well-understood. Necroptosis, a regulated form of cell death, is involved in injuring renal tubular epithelial cells (RTECs). Phosphoglycerate mutase 5 (PGAM5) is a key downstream effector of necroptosis. This study investigated the underlying mechanism of PGAM5 in promoting lipid-induced necroptosis in RTECs. HK2 cells (an immortalized proximal tubule epithelial cell line) were exposed to oleic acid (OA) to mimic the lipid overload environment in vitro. We found that OA suppressed HK2 cell proliferation, triggered cytoskeleton rupture and cell death. In OA-treated cells, upregulated expression of necroptosis pathway proteins, phosphorylated receptor-interacting protein-1/3 (pRIPK1/3), phosphorylated mixed lineage kinase domain-like protein (pMLKL), PGAM5, phosphorylated dynamin-related protein 1 (pDRP1S616), and downregulated pDRP1S637 expression were observed. This was accompanied by mitochondrial dysfunction (mitochondrial ROS overproduction and decreased mitochondrial membrane potential) and increased cellular necrosis, as reflected by Annexin V/ Propidium Iodide (PI) labeling. OA also induced the accumulation of LC3II and P62, blocking autophagosome fusion with lysosomes. Knockdown of PGAM5 could prevent these OA-induced changes. We propose inhibition of PGAM5 protects lipid-induced RTECs from necroptosis by reducing DRP1-mediated mitochondrial fission and improving mitophagy flux.


Assuntos
Dinâmica Mitocondrial , Mitofagia , Necroptose , Fosfoglicerato Mutase/metabolismo , Células Epiteliais/metabolismo , Lipídeos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
18.
Comput Methods Programs Biomed ; 227: 107224, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36379202

RESUMO

BACKGROUND AND OBJECTIVE: Enhanced external counterpulsation (EECP) is a non-invasive treatment modality capable of treating a variety of ischemic diseases. Currently, no effective methods of predicting the patient-specific hemodynamic effects of EECP are available. In this study, a personalized 0D-1D model of the cardiovascular system was developed for hemodynamic simulation to simulate the changes in blood flow in the EECP state and develop the best treatment protocol for each individual. METHODS: A 0D-1D closed-loop model of the cardiovascular system was developed for hemodynamic simulation, consisting of a 1D wave propagation model for arteries, a 0D model for veins and capillaries, and a one-fiber model for the heart. Additionally, a simulation model coupling EECP with a 1D model was established. Physiological data, including the blood flow in different arteries, were clinically collected from 22 volunteers at rest and in the EECP state. Sensitivity analysis and a simulated annealing algorithm were used to build personalized 0D-1D models using the clinical data in the rest state as optimization objectives. Then, the clinical data on EECP were used to verify the applicability and accuracy of the personalized models. RESULTS: The simulation results and clinical data were found to be in agreement for all 22 subjects, with waveform similarity coefficients (r) exceeding 90% for most arteries at rest and 80% for most arteries during EECP. CONCLUSIONS: The 0D-1D closed-loop model and the optimized method can facilitate personalized modeling of the cardiovascular system using the data in the rest state and effectively predict the hemodynamic changes in the EECP state, which is significant for the numerical simulation of personalized hemodynamics. The model can also potentially be used to make decisions regarding patient-specific treatment.


Assuntos
Contrapulsação , Humanos , Contrapulsação/métodos , Hemodinâmica/fisiologia , Simulação por Computador , Artérias , Algoritmos
19.
Dis Markers ; 2022: 4064733, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36199821

RESUMO

Objective: Activin receptor-like kinase 7 (ALK7) is a member of the ALK family that has a key role in diabetes. However, the role of ALK7 in diabetic nephropathy (DN) remains unclear. Methods: Herein, we evaluated the effects of ALK7 on mesangial cells (MCs). MCs were transfected with si-ALK7 or pcDNA3.0-ALK7, and then stimulated with 40 mM glucose for 24 h. Cell proliferation was detected by MTT assay. Relative ROS level was detected using DCFH-DA staining. The contents of inflammatory cytokines were determined by ELISA. Western blot analysis was used to determine the expression levels of FN, Col IV, Nrf2, and HO-1 in MCs. Results: Our results showed that ALK7 expression was induced by HG in MCs. Knockdown of ALK7 inhibited HG-induced cell proliferation. The HG-induced ROS was mitigated by si-ALK7 with decreased ROS level and NOX activity. In addition, ALK7 knockdown exhibited anti-inflammatory activity in HG-stimulated MCs. Moreover, ALK7 knockdown attenuated fibronectin (FN) and collagen IV (Col IV) expression in MCs. Knockdown of ALK7 enhanced Nrf2/HO-1 pathway in MCs. Inhibition of Nrf2 reversed the protective effects of ALK7 knockdown on HG-stimulated MCs. Conclusion: ALK7 knockdown exerted protective effects on HG-stimulated MCs through activation of the Nrf2/HO-1 pathway. Thus, targeting ALK7 might be a therapeutic approach for the treatment of DN.


Assuntos
Receptores de Ativinas Tipo I/metabolismo , Nefropatias Diabéticas , Fator 2 Relacionado a NF-E2 , Anti-Inflamatórios/uso terapêutico , Colágeno Tipo IV , Citocinas/metabolismo , Nefropatias Diabéticas/genética , Matriz Extracelular , Fibronectinas/metabolismo , Glucose/metabolismo , Humanos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo
20.
J Biomech ; 143: 111264, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36055052

RESUMO

Intermittent pneumatic compression (IPC) therapy has been used to enhance peripheral blood flow for prevention and rehabilitation of ischemic-related vascular diseases. A novel phenomenon has been reported that multiple blood flow surges appeared in the skin blood flow signal during each compression, but its mechanism has not been fully revealed. This study aimed to gain insights into the origins of these blood flow surges through experiment and biomechanical modeling methods. Foot skin blood flow (SBF) signals of 13 healthy adults (23.8 ± 0.5 yr old, 7 males) and air cuff pressure signals were recorded during IPC. Lumped parameter modeling and wavelet analysis were adopted to investigate the multiple blood flow surges (named as Peak1, Peak2 and Peak3). The results of the simulated Peak1 and Peak2 were in good agreements with the experiment results, suggesting that IPC could enhance foot SBF not only by deflation, but also by inflation. Statistical analysis demonstrated that high frequency compression with more frequent occurrence of Peak1 and Peak2 lead to significantly higher (Friedman test, p < 0.001) time-averaged SBF enhancement than the traditional mode. In addition, wavelet analysis showed that the major frequency component of the Peak3 (0.059 Hz) was within the range of the vascular myogenic activity, suggesting a vascular regulation process triggered by intravascular pressure changes. Our study provide new insights into the mechanism of how IPC enhance foot SBF.


Assuntos
Dispositivos de Compressão Pneumática Intermitente , Perna (Membro) , Adulto , Velocidade do Fluxo Sanguíneo/fisiologia , Hemodinâmica/fisiologia , Humanos , Isquemia/terapia , Masculino , Fluxo Sanguíneo Regional/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...