Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Chromatogr ; 36(1): e5233, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34519055

RESUMO

Aesculetin, a coumarin compound present in the sancho tree and chicory, exhibits excellent antioxidant and anti-inflammatory activities in the vascular and immune system. In this study, a rapid and sensitive ultra-high performance liquid chromatography electrospray ionization-tandem mass spectrometry (UHPLC-ESI-MS/MS) method was established and validated for the determination of aesculetin in rat plasma. Plasma samples were prepared by protein precipitation with acetonitrile. Chromatographic separation was performed on an Acquity UPLC HSS T3 C18 column (2.1 × 100 mm, 1.8 µm) with gradient elution at a flow rate of 0.3 ml/min, using mobile phase consisting of 0.1% formic acid (A) and acetonitrile (B). Aesculetin and puerarin (internal standard) were detected by multiple reaction monitoring in negative ion mode. The method was fully validated according to the US Food and Drug Administration guidelines. The calibration curve was linear over the range of 2-1,000 ng/ml with correlation coefficient >0.9980. The carry-over, matrix effect, extraction recovery, dilution effect, intra- and inter-day precision and the accuracy were within acceptable limits. The method was then applied to a pharmacokinetic study of aesculetin in rats. After oral administration at doses of 5, 10 and 20 mg/kg, the plasma concentration reached peaks of 95.7, 219.9, 388.6 ng/ml at times of 1.22-1.78 h. The oral bioavailability was calculated as 15.6-20.3% in rat plasma. The result provided pre-clinical information for further application of aesculetin.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Umbeliferonas/sangue , Umbeliferonas/farmacocinética , Animais , Limite de Detecção , Modelos Lineares , Masculino , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Umbeliferonas/química
2.
Drug Test Anal ; 12(6): 827-835, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32043805

RESUMO

Lumiracoxib is a selective cyclooxygenase-2 inhibitor, which has been reported to cause rare but severe liver injury. Considering that lumiracoxib has a carboxylic group in the molecule, glucuronidation to form acylglucuronide would be one of the possible mechanisms of lumiracoxib-induced liver injury. The aim of this study was to identify the metabolites of lumiracoxib that were formed via acyl-glucuronidation in human liver microsomes using glutathione (GSH) and N-acetyl-lysine (NAL) as trapping agents by liquid chromatography combined with high resolution mass spectrometry. The structures of the detected metabolites were identified by their accurate masses, fragment ions, and retention times. Under the current conditions, eight lumiracoxib associated metabolites were identified. With the presence of UDPGA, lumiracoxib was biotransformed into lumiracoxib-1-O-acylglucuronide (M1) and 4'-hydroxyl-lumiracoxib-1-O-acylglucuronide (M2), both of which were reactive and prone to react with GSH to form drug-S-acyl-GSH adducts (M3 and M4) through transacylation. In addition to reaction with GSH, the formed 1-O-acylglucuronides were chemically unstable (T1/2 = 1.5 h in phosphate buffer) and rearranged to 2-, 3-, and/or 4-isomers, which further underwent ring-opening to form aldehyde derivatives and then reacted with NAL to yield Schiff base derivatives (M5-M8). The present study provides a clear bioactivation profile of lumiracoxib through acyl glucuronidation, which would be one of the mechanisms attributed to liver injury caused by lumiracoxib.


Assuntos
Inibidores de Ciclo-Oxigenase 2/metabolismo , Diclofenaco/análogos & derivados , Microssomos Hepáticos/metabolismo , Ativação Metabólica , Aminoácidos/metabolismo , Biotransformação , Cromatografia Líquida de Alta Pressão , Diclofenaco/metabolismo , Glucuronídeos/metabolismo , Glutationa/metabolismo , Humanos , Isomerismo , Espectrometria de Massas em Tandem
3.
Exp Lung Res ; 45(5-6): 123-134, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31210057

RESUMO

Pulmonary fibrosis (PF) is an end-stage change in lung disease characterized by fibroblast proliferation, massive extracellular matrix (ECM) aggregation with inflammatory damage, and severe structural deterioration. PD29 is a 29-amino acid peptide which has the potential to alleviate PF pathogenesis via three mechanisms: anti-angiogenesis, inhibition of matrix metalloproteinase activities, and inhibition of integrins. In this study, fibrotic lung injuries were induced in SD rats by a single intratracheal instillation of 5 mg/kg bleomycin (BLM). Then, these rats were administered 7.5, 5, or 2.5 mg/kg PD29 daily for 30 days. BLM induced-syndromes including structure distortion, excessive deposition of ECM, excessive inflammatory infiltration, and pro-inflammatory cytokine release were used to evaluate the protective effect of PD-29. Oxidative stress damage in lung tissues was attenuated by PD29 in a dose-dependent manner. The expression of TGF-ß1 and the phosphorylation of Smad-2/-3-its downstream targets-were enhanced by BLM and weakened by PD29. In vitro, PD29 inhibited TGF-ß1-induced epithelial-mesenchymal transition (EMT) and transformation in A549 cells and mouse primary fibroblasts into myofibroblasts. In summary, PD29 reversed EMT and transformation of fibroblasts into myofibroblasts in vitro and prevented PF in vivo possibly by suppressing the TGF-ß1/Smad pathway.


Assuntos
Pulmão/efeitos dos fármacos , Fibrose Pulmonar/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Células A549 , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Bleomicina , Avaliação Pré-Clínica de Medicamentos , Humanos , Pulmão/metabolismo , Metaloproteinases da Matriz/metabolismo , Camundongos , Cultura Primária de Células , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Ratos Sprague-Dawley , Proteínas Smad/metabolismo , Inibidores Teciduais de Metaloproteinases/metabolismo , Fator de Crescimento Transformador beta/metabolismo
4.
Molecules ; 24(2)2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30669328

RESUMO

A lack of specificity is restricting the further application of conotoxin from Conus bullatus (BuIA). In this study, an analogue library of BuIA was established and virtual screening was used, which identified high α7 nicotinic acetylcholine receptor (nAChR)-selectivity analogues. The analogues were synthesized and tested for their affinity to functional human α7 nAChR and for the regulation of intracellular calcium ion capacity in neurons. Immunofluorescence, flow cytometry, and patch clamp results showed that the analogues maintained their capacity for calcium regulation. The results of the hot-plate model and paclitaxel-induced peripheral neuropathy model indicated that, when compared with natural BuIA, the analgesia activities of the analogues in different models were maintained. To analyze the adverse effects and toxicity of BuIA and its analogues, the tail suspension test, forced swimming test, and open field test were used. The results showed that the safety and toxicity of the analogues were significantly better than BuIA. The analogues of BuIA with an appropriate and rational mutation showed high selectivity and maintained the regulation of Ca2+ capacity in neurons and activities of analgesia, whereas the analogues demonstrated that the adverse effects of natural α-conotoxins could be reduced.


Assuntos
Analgésicos/química , Analgésicos/farmacologia , Conotoxinas/química , Conotoxinas/farmacologia , Desenho de Fármacos , Analgésicos/efeitos adversos , Cromatografia Líquida de Alta Pressão , Conotoxinas/efeitos adversos , Relação Dose-Resposta a Droga , Modelos Moleculares , Relação Estrutura-Atividade , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...