Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 12(11): 5890-6, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23066756

RESUMO

We report a simple, controlled doping method for achieving n-type, intrinsic, and p-type lead sulfide (PbS) nanowires (NWs) grown by chemical vapor deposition without introducing any impurities. A wide range of carrier concentrations is realized by adjusting the ratio between the Pb and S precursors. The field effect electron mobility of n-type PbS NWs is up to 660 cm(2)/(V s) at room temperature, in agreement with a long minority carrier diffusion length measured by scanning photocurrent microscopy (SPCM). Interestingly, we have observed a strong dependence of minority carrier diffusion length on gate voltage, which can be understood by considering a carrier concentration dependent recombination lifetime. The demonstrated ambipolar doping of high quality PbS NWs opens up exciting avenues for their applications in photodetectors and photovoltaics.

2.
Nanotechnology ; 23(26): 265602, 2012 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-22699324

RESUMO

We report chemical-vapor-deposition (CVD) synthesis of high-density lead sulfide (PbS) nanowire arrays and nano pine trees directly on Ti thin films, and the fabrication of photovoltaic devices based upon the PbS nanowires. The as-grown nanowire arrays are largely vertically aligned to the substrates and are uniformly distributed over a relatively large area. Field effect transistors incorporating single PbS nanowires show p-type conduction and high mobilities. These catalytic metal thin films also serve as photocarrier collection electrodes and greatly facilitate device integration. For the first time, we have fabricated Schottky junction photovoltaic devices incorporating PbS nanowires, which demonstrate the capability of converting near-infrared light to electricity. The PbS nanowire devices are stable in air and their external quantum efficiency shows no significant decrease over a period of 3 months in air. We have also compared the photocurrent direction and quantum efficiencies of photovoltaic devices made with different metal electrodes, and the results are explained by band bending at the Schottky junction. Our research shows that PbS nanowires are promising building blocks for collecting near-infrared solar energy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...