Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomicrofluidics ; 15(5): 054101, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34504638

RESUMO

In this study, a viscometer, which can measure the viscosity of low-volume liquids (25 µl) within 30 s, was developed on a centrifugal platform. The centrifugal viscometer consists of a disk platform and a motor. Under disk rotation, centrifugal, Coriolis, and viscosity-induced drag forces result in deflection of liquid flow. The viscosity of the liquid sample is determined by the deflection angle of the liquid, which can be examined through image analysis or visual inspection. The viscosities of a series of Newtonian model fluids were tested by the centrifugal viscometer and the results showed good agreement with the ones tested by a conventional rotational viscometer. Since the centrifugal viscometer only requires a motor to function, the microfluidic disk can be produced in large quantities at a low cost through injection molding, and the deflection angle can be detected through visual inspection, it provides an inexpensive, easy to operate, and portable approach to measure low-volume liquid viscosity.

2.
Biomicrofluidics ; 12(5): 054101, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30271516

RESUMO

A cost-effective way to carry out multiple enzyme-linked immunosorbent assays (ELISAs) on a centrifugal platform using the liquid-aliquoting and siphoning-evacuation (LASE) technique was developed in this paper. Instead of preloading all the reagents in the reservoirs before testing, each reagent was loaded only one time during testing. The reagent was distributed into equal aliquots and delivered into reaction chambers by the aliquoting fluidic function. In addition, a siphoning-evacuation technique was developed to improve the washing efficiency and simplify the assay protocol. Furthermore, the entire assay protocol can be conducted using a two-step spinning protocol, which greatly reduces the cost of the motor control system. With the LASE technique, a low-cost and user-friendly ELISA system can be achieved.

3.
Biomicrofluidics ; 8(5): 052110, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25538803

RESUMO

An automated, disk-based, enzyme-linked immunosorbent assay (ELISA) system is presented in this work. Magnetic beads were used as the antibody carriers to improve the assay sensitivity and shorten the reaction time. The magnetic module integrated on the system is capable of controlling the magnetic beads to either move in the incubation stage or immobilize at a specific location during washing stage. This controlling mechanism utilizes a passive controlling approach so that it can be performed through disk spinning without the need of active control from external devices. The movement of the magnetic beads was investigated and the optimal rotational speed was found to be related to the ratio of the processing time to the cycle time of the magnetic beads. Comparing to ELISA conducted on microtiter plates, similar test results could be achieved by the disk-based ELISA but the entire protocol can be finished automatically within 45 min with much less reagent consumption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...