Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ying Yong Sheng Tai Xue Bao ; 32(7): 2485-2495, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34313067

RESUMO

Radix pseudostellariae is a traditional Chinese medicinical herb, with tuberous roots being used as a medicine. Serious continuous monoculture problems were suffered from process of artificial and intensive cultivation. To explore the effective technical methods to overcome the monoculture problems, the effects of different technical substitution patterns on soil environment remediation, photosynthetic physiology and yield performance of R. pseudostellariae were assessed under continuous cropping system with four technical substitution treatments in the phase between two crops after the newly harvested R. pseudostellariae (first crop): fallow (RP-F-RP), fallow treated with microbial fertilizer (RP-F-BF), water flooding (RP-WF), and water flooding treated with specific microbial fertilizer (RP-WF-BF). Results showed that RP-WF-BF pattern was the single one that could effectively restore R. pseudostellariae yield under two-year monoculture and three-year monoculture to more than 90% and 70% of the newly planted respectively. All the other patterns did not significantly improve R. pseudostellariae yield under two-year monoculture. The contents of polysaccharide and total saponin in R. pseudostellariae under RP-WF-BF treatment were significantly increased by 15.3% and 16.5% compared with those of the newly planted, respectively. The abundance of beneficial microorganisms in the rhizosphere soil of R. pseudostellariae significantly increased. A reverse pattern occurred for pathogens under RP-WF-BF pattern. Moreover, soil nitrogen cycling was improved. The expression of AOB, nosZ and nirK was increased by 931%, 124% and 100% compared with those in the RP-F-RP pattern, respectively. Soil acidification under RP-WF-BF pattern was alleviated. The alleviation of soil biological and abiotic stress enhanced the stability of the antioxidant enzyme system, thereby improving the growth and development of R. pseudostellariae at the seedling and the early expand stages. The chlorophyll content, leaf area index and photosynthesis rate of leaves were increased, with the dry matter translocation improved and accumulation of underground dry matter accelerated, which ultimately increased yield and quality under RP-WF-BF pattern. In this study, the separate water flooding treatment (RP-WF) and microbial fertilizer treatment (RP-F-BF) failed to significantly reduce the continuous cropping obstacles of R. pseudostellariae, while the combination of them could produce a multiplication effect of sustainable strengthening on rhizosphere environment. The findings suggested that effective technical substitution could reduce replant disease of R. pseudostellariae.


Assuntos
Rizosfera , Microbiologia do Solo , Agricultura , Fertilizantes , Raízes de Plantas , Solo
2.
Ying Yong Sheng Tai Xue Bao ; 27(11): 3623-3630, 2016 Nov 18.
Artigo em Chinês | MEDLINE | ID: mdl-29696861

RESUMO

Pseudostellaria heterophylla is a perennial herbaceous plant in the family Caryophyllaceae. The tuberous roots of P. heterophylla are highly valued in traditional Chinese medicine and have a high market demand. However, extended monoculture of P. heterophylla results in a significant decline in the biomass and quality, and escalates disease and pest problems. Therefore, it is important to understand the underlying mechanism and biocontrol methods for consecutive monoculture problems. With "Zheshen 2" as an experimental material, the changes in the contents of main nutrients in soil, phenolic acids and specific microbes under monoculture and different amendments were analyzed by using high performance liquid chromatography (HPLC) and qPCR. The results showed that consecutive monoculture of P. heterophylla led to a decrease in yield by 43.5% while the microbial fertilizer treatment and the paddy-upland rotation could relieve the consecutive monoculture problems. Available nitrogen, available phosphorus, available potassium and total potassium were significantly higher in the consecutively monocultured soils than in the newly planted soils. But consecutive monoculture resulted in soil acidification. HPLC analysis showed that conse-cutive monoculture of this plant did not lead to a consistent accumulation of soil phenolic acids. At middle stage of root expansion and at harvest stage, most of phenolic acids were even higher in the newly planted soils than in the consecutively monocultured soils. Furthermore, qPCR analysis showed that the amounts of three specific pathogens identified previously (i.e. Fusarium oxysporum, Talaromyces helicus, Kosakonia sacchari) were significantly higher in the consecutively monocultured soils than in the newly planted soils. However, the microbial fertilizer treatment and the paddy-upland rotation resulted in a significant decline in the population of these specific pathogens and improved the soil environment. In conclusion, the consecutive monoculture problems of P. heterophylla may be due to the rapid proliferation of host-specific pathogens, rather than the deficiency of soil nutrients and the autotoxicity of allelochemicals in root exudates. The results in this study could provide the theoretical basis to explore the underlying mechanism of replanting disease of P. heterophylla and its biocontrol strategies.


Assuntos
Caryophyllaceae/crescimento & desenvolvimento , Hidroxibenzoatos/química , Rizosfera , Microbiologia do Solo , Solo/química , Cromatografia Líquida de Alta Pressão , Fertilizantes , Fusarium , Nitrogênio/química , Fósforo/química , Raízes de Plantas , Potássio/química , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...