Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Cancer ; 24(1): 1131, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261851

RESUMO

BACKGROUND: Sunitinib, a newly developed multi-targeted tyrosine kinase inhibitor (TKI), has become a common therapeutic option for managing advanced renal cell carcinoma (RCC). Examining the mechanism underlying the interaction between sunitinib and isavuconazole was the aim of this effort. METHODS: The concentrations of sunitinib and its primary metabolite, N-desethyl sunitinib, were analyzed and quantified using ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Our study evaluated the potential interaction between isavuconazole and sunitinib using rat liver microsomes (RLM), human liver microsomes (HLM), and in vivo rat models. For the in vivo study, two groups (n = 5) of Sprague-Dawley (SD) rats were randomly allocated to receive sunitinib either with or without co-administration of isavuconazole. Additionally, the effects of isavuconazole on the metabolic stability of sunitinib and N-desethyl sunitinib were studied in RLM in vitro. RESULTS: Our findings demonstrated that in RLM, isavuconazole exhibited a mixed non-competitive and competitive inhibition mechanism, with an IC50 (half maximal inhibitory concentration) value of 1.33 µM. Meanwhile, in HLM, isavuconazole demonstrated a competitive inhibition mechanism, with an IC50 of 5.30 µM. In vivo studies showed that the presence of isavuconazole significantly increased the pharmacokinetic characteristics of sunitinib, with the AUC(0→t), AUC(0→∞), and Tmax rising to approximately 211.38%, 203.92%, and 288.89%, respectively, in contrast to the control group (5 mg/kg sunitinib alone). The pharmacokinetic characteristics of the metabolite N-desethyl sunitinib in the presence of isavuconazole remained largely unchanged compared to the control group. Furthermore, in vitro metabolic stability experiments revealed that isavuconazole inhibited the metabolic processing of both sunitinib and N-desethyl sunitinib. CONCLUSIONS: Isavuconazole had a major impact on sunitinib metabolism, providing fundamental information for the precise therapeutic administration of sunitinib.


Assuntos
Interações Medicamentosas , Indóis , Microssomos Hepáticos , Nitrilas , Piridinas , Pirróis , Sunitinibe , Triazóis , Sunitinibe/farmacologia , Sunitinibe/farmacocinética , Animais , Piridinas/farmacocinética , Piridinas/farmacologia , Ratos , Nitrilas/farmacocinética , Nitrilas/farmacologia , Humanos , Microssomos Hepáticos/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Pirróis/farmacocinética , Pirróis/farmacologia , Triazóis/farmacocinética , Triazóis/farmacologia , Indóis/farmacocinética , Indóis/farmacologia , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Masculino , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/metabolismo
2.
BMC Chem ; 18(1): 37, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378603

RESUMO

Broad-spectrum histone deacetylase inhibitors (HDACi) have excellent anti-tumor effects, such as abexinostat, which was a novel oral HDACi that was widely used in clinical treatment. The purpose of this study was to establish a rapid and reliable method for the detection of abexinostat concentrations in rat plasma using ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The mobile phase we used was acetonitrile and 0.1% formic acid, and the internal standard (IS) was givinostat. Selective reaction monitoring (SRM) was used for detection with ion transitions at m/z 397.93 → 200.19 for abexinostat and m/z 422.01 → 186.11 for givinostat, respectively. The intra-day and inter-day precision of abexinostat were less than 11.5% and the intra-day and inter-day accuracy ranged from - 10.7% to 9.7% using this method. During the analysis process, the stability of the test sample was reliable. In addition, the recovery and matrix effects of this method were within acceptable limits. Finally, the method presented in this paper enabled accurate and quick determination of abexinostat levels in rat plasma from the pharmacokinetic study following gavage at a dose of 8.0 mg/kg abexinostat.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA