Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-31634828

RESUMO

There is a critical need to develop new noninvasive therapies to treat bacteria biofilms. Previous studies have demonstrated the effectiveness of cavitation-based ultrasound histotripsy to destroy these biofilms. In this study, the dependence of biofilm destruction on multiple scan parameters was assessed by conducting exposures at different scan speeds (0.3-1.4 beamwidths/s), step sizes (0.25-0.5 beamwidths), and the number of passes of the focus across the mesh (2-6). For each of the exposure conditions, the number of colony-forming units (CFUs) remaining on the mesh was quantified. A regression analysis was then conducted, revealing that the scan speed was the most critical parameter for biofilm destruction. Reducing the number of passes and the scan speed should allow for more efficient biofilm destruction in the future, reducing the treatment time.


Assuntos
Biofilmes/efeitos da radiação , Staphylococcus aureus/efeitos da radiação , Telas Cirúrgicas/microbiologia , Terapia por Ultrassom , Contagem de Colônia Microbiana , Viabilidade Microbiana/efeitos da radiação , Modelos Biológicos , Terapia por Ultrassom/instrumentação , Terapia por Ultrassom/métodos , Ondas Ultrassônicas
2.
Artigo em Inglês | MEDLINE | ID: mdl-30442604

RESUMO

The use of cavitation-based ultrasound histotripsy to treat infections on surgical mesh has shown great potential. However, any impact of the therapy on the mesh must be assessed before the therapy can be applied in the clinic. The goal of this study was to determine if the cavitation-based therapy would reduce the strength of the mesh thus compromising the functionality of the mesh. First, Staphylococcus aureus biofilms were grown on the surgical mesh samples and exposed to high-intensity ultrasound pulses. For each exposure, the effectiveness of the therapy was confirmed by counting the number of colony forming units (CFUs) on the mesh. Most of the exposed meshes had no CFUs with an average reduction of 5.4-log10 relative to the sham exposures. To quantify the impact of the exposure on mesh strength, the force required to tear the mesh and the maximum mesh expansion before damage were quantified for control, sham, and exposed mesh samples. There was no statistical difference between the exposed and sham/control mesh samples in terms of ultimate tensile strength and corresponding mesh expansion. The only statistical difference was with respect to mesh orientation relative to the applied load. The tensile strength increased by 1.36 N while the expansion was reduced by 1.33 mm between different mesh orientations.


Assuntos
Biofilmes/efeitos da radiação , Staphylococcus aureus/efeitos da radiação , Telas Cirúrgicas/microbiologia , Terapia por Ultrassom , Contagem de Colônia Microbiana , Modelos Biológicos
3.
Artigo em Inglês | MEDLINE | ID: mdl-29856719

RESUMO

Cavitation-based ultrasound histotripsy has shown potential for treating infections on surgical mesh. The goal of this paper was to explore a new scan strategy while assessing the impact of scan speed, scan step size, and the number of cycles in the tone burst on the destruction of S. aureus biofilms grown on surgical mesh samples using ultrasound histotripsy pulses (150 MPa/-17 MPa). For each exposure, the number of colony forming units (CFUs) on the mesh and released onto the surrounding gel was quantified. Most of the exposed mesh samples had no CFUs, and there was a statistically significant reduction in CFUs on the mesh for each of the exposures, with an average reduction of 3.8 log10 relative to the sham. Compared with the sham, there was also a statistically significant reduction in CFUs on the gel with the highest exposures.


Assuntos
Biofilmes/efeitos da radiação , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Staphylococcus aureus/efeitos da radiação , Telas Cirúrgicas/microbiologia , Contagem de Colônia Microbiana , Desenho de Equipamento , Sonicação
4.
Artigo em Inglês | MEDLINE | ID: mdl-28650808

RESUMO

Prior studies demonstrated that histotripsy generated by high-intensity tone bursts to excite a bubble cloud adjacent to a medical implant can destroy the bacteria biofilm responsible for the infection. The goal of this paper was to treat Staphylococcus aureus (S. aureus) biofilms on surgical mesh samples while varying the number of cycles in the tone burst to minimize collateral tissue damage while maximizing therapy effectiveness. S. aureus biofilms were grown on 1-cm square surgical mesh samples. The biofilms were then treated in vitro using a spherically focused transducer (1.1 MHz, 12.9-cm focal length, 12.7-cm diameter) using either a sham exposure or histotripsy pulses with tone burst durations of 3, 5, or 10 cycles (pulse repetition frequency of 333 Hz, peak compressional pressure of 150 MPa, peak rarefactional pressure of 17 MPa). After treatment, the number of colony forming units (CFUs) on the mesh and the surrounding gel was independently determined. The number of CFUs remaining on the mesh for the sham exposure (4.8 ± 0.9-log10) (sample mean ± sample standard deviation-log10 from 15 observations) was statistically significantly different from the 3-cycle (1.9 ± 1.5-log10), 5-cycle (2.2 ± 1.1-log10), and 10-cycle exposures (1 ± 1.5-log10) with an average reduction in the number of CFUs of 3.1-log10. The numbers of CFUs released into the gel for both the sham and exposure groups were the same within a bound of 0.86-log10, but this interval was too large to deduce the fate of the bacteria in the biofilm following the treatment.


Assuntos
Biofilmes/efeitos da radiação , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Staphylococcus aureus/efeitos da radiação , Telas Cirúrgicas/microbiologia , Contagem de Colônia Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...