Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Expert Syst Appl ; 196: 116547, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35068709

RESUMO

In the context of the outbreak of coronavirus disease (COVID-19), this paper proposes an innovative and systematic decision support model based on Bayesian networks (BNs) to identify and control the risk of COVID-19 patients spreading the virus, which requires the following three steps. First, by consulting the related literature and combining this with expert knowledge, we identify and classify the characteristics (risk factors) of COVID-19 and obtain a conceptual framework for COVID-19 Risk Assessment Bayesian Networks (CRABNs). Second, data on COVID-19 patients with expert scoring results on patient risk levels were collected from hospitals in Hubei Province of China and are used as the training set, and the structure and parameters of the CRABNs model are obtained through machine learning. Finally, we propose two indicators, namely, Model Bias and Model Accuracy, and use the remaining data to verify the feasibility and effectiveness of the CRABNs model to ensure that there are no significant differences between the predicted results of the model and the actual results provided by experts who have relevant experience in treating COVID-19. At the same time, we compared the CRABNs model with the support vector machine (SVM), random forest (RF), and k-nearest neighbour (KNN) models through four indicators: accuracy, sensitivity, specificity, and F-score. The results suggest the reliability of the model and show that it has promising application potential. The proposed model can be used globally by doctors in hospitals as a decision support tool to improve the accuracy of assessing the severity of COVID-19 symptoms in patients. Furthermore, with the further improvement of the model in the future, it can be used for risk assessments in the field of epidemics.

2.
Comput Methods Programs Biomed ; 211: 106444, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34614451

RESUMO

BACKGROUND: As blood testing is radiation-free, low-cost and simple to operate, some researchers use machine learning to detect COVID-19 from blood test data. However, few studies take into consideration the imbalanced data distribution, which can impair the performance of a classifier. METHOD: A novel combined dynamic ensemble selection (DES) method is proposed for imbalanced data to detect COVID-19 from complete blood count. This method combines data preprocessing and improved DES. Firstly, we use the hybrid synthetic minority over-sampling technique and edited nearest neighbor (SMOTE-ENN) to balance data and remove noise. Secondly, in order to improve the performance of DES, a novel hybrid multiple clustering and bagging classifier generation (HMCBCG) method is proposed to reinforce the diversity and local regional competence of candidate classifiers. RESULTS: The experimental results based on three popular DES methods show that the performance of HMCBCG is better than only use bagging. HMCBCG+KNE obtains the best performance for COVID-19 screening with 99.81% accuracy, 99.86% F1, 99.78% G-mean and 99.81% AUC. CONCLUSION: Compared to other advanced methods, our combined DES model can improve accuracy, G-mean, F1 and AUC of COVID-19 screening.


Assuntos
COVID-19 , Contagem de Células Sanguíneas , Análise por Conglomerados , Humanos , Aprendizado de Máquina , SARS-CoV-2
3.
Comput Math Methods Med ; 2021: 2213194, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34545291

RESUMO

Predicting postoperative survival of lung cancer patients (LCPs) is an important problem of medical decision-making. However, the imbalanced distribution of patient survival in the dataset increases the difficulty of prediction. Although the synthetic minority oversampling technique (SMOTE) can be used to deal with imbalanced data, it cannot identify data noise. On the other hand, many studies use a support vector machine (SVM) combined with resampling technology to deal with imbalanced data. However, most studies require manual setting of SVM parameters, which makes it difficult to obtain the best performance. In this paper, a hybrid improved SMOTE and adaptive SVM method is proposed for imbalance data to predict the postoperative survival of LCPs. The proposed method is divided into two stages: in the first stage, the cross-validated committees filter (CVCF) is used to remove noise samples to improve the performance of SMOTE. In the second stage, we propose an adaptive SVM, which uses fuzzy self-tuning particle swarm optimization (FPSO) to optimize the parameters of SVM. Compared with other advanced algorithms, our proposed method obtains the best performance with 95.11% accuracy, 95.10% G-mean, 95.02% F1, and 95.10% area under the curve (AUC) for predicting postoperative survival of LCPs.


Assuntos
Algoritmos , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/cirurgia , Máquina de Vetores de Suporte , Biologia Computacional , Heurística Computacional , Bases de Dados Factuais , Lógica Fuzzy , Humanos , Análise de Sobrevida
4.
ScientificWorldJournal ; 2014: 917432, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25197719

RESUMO

The main results are about the groups of the negations on the unit square, which is considered as a bilattice. It is proven that all the automorphisms on it form a group; the set, containing the monotonic isomorphisms and the strict negations of the first (or the second or the third) kind, with the operator "composition," is a group G2 (or G3 or G4, correspondingly). All these four kinds of mappings form a group G5. And all the groups Gi , i = 2,3, 4 are normal subgroups of G5. Moreover, for G5, a generator set is given, which consists of all the involutive negations of the second kind and the standard negation of the first kind. As a subset of the unit square, the interval-valued set is also studied. Two groups are found: one group consists of all the isomorphisms on L(I) , and the other group contains all the isomorphisms and all the strict negations on L(I) , which keep the diagonal. Moreover, the former is a normal subgroup of the latter. And all the involutive negations on the interval-valued set form a generator set of the latter group.


Assuntos
Inteligência Artificial , Lógica , Conceitos Matemáticos , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...