Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 14431, 2024 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-38910160

RESUMO

Immunotherapy based on immune checkpoint genes (ICGs) has recently made significant progress in the treatment of bladder cancer patients, but many patients still cannot benefit from it. In the present study, we aimed to perform a comprehensive analysis of ICGs in bladder cancer tissues with the aim of evaluating patient responsiveness to immunotherapy and prognosis. We scored ICGs in each BLCA patient from TCGA and GEO databases by using ssGSEA and selected genes that were significantly associated with ICGs scores by using the WCGNA algorithm. NMF clustering analysis was performed to identify different bladder cancer molecular subtypes based on the expression of ICGs-related genes. Based on the immune related genes differentially expressed among subgroups, we further constructed a novel stratified model containing nine genes by uni-COX regression, LASSO regression, SVM algorithm and multi-COX regression. The model and the nomogram constructed based on the model can accurately predict the prognosis of bladder cancer patients. Besides, the patients classified based on this model have large differences in sensitivity to immunotherapy and chemotherapy, which can provide a reference for individualized treatment of bladder cancer.


Assuntos
Imunoterapia , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/terapia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Humanos , Imunoterapia/métodos , Prognóstico , Nomogramas , Proteínas de Checkpoint Imunológico/genética , Proteínas de Checkpoint Imunológico/metabolismo , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , Masculino , Feminino , Algoritmos , Perfilação da Expressão Gênica
2.
Chin Med J (Engl) ; 137(7): 806-817, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37668091

RESUMO

ABSTRACT: Fibrosis, which is a manifestation of the physiological response to injury characterized by excessive accumulation of extracellular matrix components, is a ubiquitous outcome of the repair process. However, in cases of repetitive or severe injury, fibrosis may become dysregulated, leading to a pathological state and organ failure. In recent years, a novel form of regulated cell death, referred to as ferroptosis, has been identified as a possible contributor to fibrosis; it is characterized by iron-mediated lipid peroxidation. It has garnered attention due to the growing body of evidence linking ferroptosis and fibrogenesis, which is believed to be driven by underlying inflammation and immune responses. Despite the increasing interest in the relationship between ferroptosis and fibrosis, a comprehensive understanding of the precise role that ferroptosis plays in the formation of fibrotic tissue remains limited. This review seeks to synthesize previous research related to the topic. We categorized the different direct and indirect mechanisms by which ferroptosis may contribute to fibrosis into three categories: (1) iron overload toxicity; (2) ferroptosis-evoked necroinflammation, with a focus on ferroptosis and macrophage interplay; and (3) ferroptosis-associated pro-fibrotic factors and pathways. Furthermore, the review considers the potential implications of these findings and highlights the utilization of ferroptosis-targeted therapies as a promising strategy for mitigating the progression of fibrosis. In conclusion, novel anti-fibrotic treatments targeting ferroptosis could be an effective treatment for fibrosis.


Assuntos
Ferroptose , Humanos , Inflamação , Peroxidação de Lipídeos , Macrófagos , Fibrose
3.
Adv Mater ; 36(2): e2307980, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37823714

RESUMO

Chemodynamic therapy (CDT) is an emerging tumor microenvironment-responsive cancer therapeutic strategy based on Fenton/Fenton-like reactions. However, the effectiveness of CDT is subject to the slow kinetic rate and non-homogeneous distribution of H2 O2 . In this study, a conceptual non-metallic "Fenton-active" center construction strategy is proposed to enhance CDT efficiency using Bi0.44 Ba0.06 Na0.5 TiO2.97 (BNBT-6) nanocrystals. The separated charge carriers under a piezoelectric-induced electric field synchronize the oxidation of H2 O and reduction of H2 O2 , which consequently increases hydroxyl radical (·OH) yield even under low H2 O2 levels. Moreover, acceptor doping induces electron-rich oxygen vacancies to facilitate the dissociation of H2 O2 and H2 O and further promote ·OH generation. In vitro and in vivo experiments demonstrate that BNBT-6 induces extensive intracellular oxidative stress and enhances cell-killing efficiency by activating necroptosis in addition to the conventional apoptotic pathway. This study proposes a novel design approach for nanomaterials used in CDT and presents a new treatment strategy for apoptosis-resistant tumors.


Assuntos
Apoptose , Neoplasias , Humanos , Ultrassonografia , Eletricidade , Elétrons , Radical Hidroxila , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Peróxido de Hidrogênio , Microambiente Tumoral
4.
EPMA J ; 14(2): 307-328, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37275548

RESUMO

Delayed graft function (DGF) is one of the key post-operative challenges for a subset of kidney transplantation (KTx) patients. Graft survival is significantly lower in recipients who have experienced DGF than in those who have not. Assessing the risk of chronic graft injury, predicting graft rejection, providing personalized treatment, and improving graft survival are major strategies for predictive, preventive, and personalized medicine (PPPM/3PM) to promote the development of transplant medicine. However, since PPPM aims to accurately identify disease by integrating multiple omics, current methods to predict DGF and graft survival can still be improved. Renal ischemia/reperfusion injury (IRI) is a pathological process experienced by all KTx recipients that can result in varying occurrences of DGF, chronic rejection, and allograft failure depending on its severity. During this process, a necroinflammation-mediated necroptosis-dependent secondary wave of cell death significantly contributes to post-IRI tubular cell loss. In this article, we obtained the expression matrices and corresponding clinical data from the GEO database. Subsequently, nine differentially expressed necroinflammation-associated necroptosis-related genes (NiNRGs) were identified by correlation and differential expression analysis. The subtyping of post-KTx IRI samples relied on consensus clustering; the grouping of prognostic risks and the construction of predictive models for DGF (the area under the receiver operating characteristic curve (AUC) of the internal validation set and the external validation set were 0.730 and 0.773, respectively) and expected graft survival after a biopsy (the internal validation set's 1-year AUC: 0.770; 2-year AUC: 0.702; and 3-year AUC: 0.735) were based on the least absolute shrinkage and selection operator regression algorithms. The results of the immune infiltration analysis showed a higher infiltration abundance of myeloid immune cells, especially neutrophils, macrophages, and dendritic cells, in the cluster A subtype and prognostic high-risk groups. Therefore, in the framework of PPPM, this work provides a comprehensive exploration of the early expression landscape, related pathways, immune features, and prognostic impact of NiNRGs in post-KTx patients and assesses their capabilities as.predictors of post-KTx DGF and graft loss,targets of the vicious loop between regulated tubular cell necrosis and necroinflammation for targeted secondary and tertiary prevention, andreferences for personalized immunotherapy. Supplementary Information: The online version contains supplementary material available at 10.1007/s13167-023-00320-w.

5.
Front Cell Dev Biol ; 11: 1060086, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234773

RESUMO

Background: Lung adenocarcinoma (LUAD) is the most common variant of non-small cell lung cancer (NSCLC) across the world. Recently, the rapid development of immunotherapy has brought a new dawn for LUAD patients. Closely related to the tumor immune microenvironment and immune cell functions, more and more new immune checkpoints have been discovered, and various cancer treatment studies targeting these novel immune checkpoints are currently in full swing. However, studies on the phenotype and clinical significance of novel immune checkpoints in LUAD are still limited, and only a minority of patients with LUAD can benefit from immunotherapy. Methods: The LUAD datasets were downloaded from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases, and the immune checkpoints score of each sample were calculated based on the expression of the 82 immune checkpoints-related genes (ICGs). The weighted gene co-expression network analysis (WGCNA) was used to obtain the gene modules closely related to the score and two different LUAD clusters were identified based on these module genes by the Non-negative Matrix Factorization (NMF) Algorithm. The differentially expressed genes between the two clusters were further used to construct a predictive signature for prognosis, immune features, and the response to immunotherapy for LUAD patients through a series of regression analyses. Results: A new immune checkpoints-related signature was finally established according to the expression of 7 genes (FCER2, CD200R1, RHOV, TNNT2, WT1, AHSG, and KRTAP5-8). This signature can stratify patients into high-risk and low-risk groups with different survival outcomes and sensitivity to immunotherapy, and the signature has been well validated in different clinical subgroups and validation cohorts. Conclusion: We constructed a novel immune checkpoints-related LUAD risk assessment system, which has a good predictive ability and significance for guiding immunotherapy. We believe that these findings will not only aid in the clinical management of LUAD patients but also provide some insights into screening appropriate patients for immunotherapy.

6.
Transplant Proc ; 55(4): 945-951, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37236867

RESUMO

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. The discovery and research of effective biomarkers have become prevailing trends. SUMO-activating enzyme subunit 1 (sae1), an E1-activating enzyme, is indispensable for protein SUMOylation. In this study, we conducted a comprehensive analysis of database contents and found that sae1 is highly expressed in HCC and is correlated with poor prognosis. We also identified its regulated transcription factor, rad51, and related signaling pathways. We conclude that sae1 is a promising cancer metabolic biomarker with diagnostic and prognostic value in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/diagnóstico , Detecção Precoce de Câncer , Biomarcadores Tumorais , Transdução de Sinais , Prognóstico
7.
Chin Med J (Engl) ; 136(9): 1026-1036, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37052144

RESUMO

ABSTRACT: With the rapid aging of the global population posing a serious problem, frailty, a non-specific state that reflects physiological senescence rather than aging in time, has become more widely addressed by researchers in various medical fields. A high prevalence of frailty is found among kidney transplant (KT) candidates and recipients. Therefore, their frailty has become a research hotspot in the field of transplantation. However, current studies mainly focus on the cross-sectional survey of the incidence of frailty among KT candidates and recipients and the relationship between frailty and transplantation. Research on the pathogenesis and intervention is scattered, and relevant review literature is scarce. Exploring the pathogenesis of frailty in KT candidates and recipients and determining effective intervention measures may reduce waiting list mortality and improve the long-term quality of life of KT recipients. Therefore, this review explains the pathogenesis and intervention measures for frailty in KT candidates and recipients to provide a reference for the formulation of effective intervention strategies.


Assuntos
Fragilidade , Falência Renal Crônica , Transplante de Rim , Humanos , Fragilidade/epidemiologia , Fatores de Risco , Qualidade de Vida , Transplante de Rim/efeitos adversos , Estudos Transversais , Transplantados
8.
Front Immunol ; 13: 1047367, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532016

RESUMO

Background: Ischemia reperfusion injury (IRI) is an inevitable process in renal transplantation, which is closely related to serious postoperative complications such as delayed graft function (DGF), acute rejection and graft failure. Neutrophil extracellular traps (NETs) are extracellular DNA structures decorated with various protein substances released by neutrophils under strong signal stimulation. Recently, NETs have been found to play an important role in the process of IRI. This study aimed to comprehensively analyze the expression landscape of NET-related genes (NRGs) during IRI, identify clusters with different degrees of IRI and construct robust DGF and long-term graft survival predictive strategies. Methods: The microarray and RNA-seq datasets were obtained from the GEO database. Differentially expressed NRGs (DE-NRGs) were identified by the differential expression analysis, and the NMF algorithm was used to conduct a cluster analysis of IRI samples. Machine learning algorithms were performed to screen DGF-related hub NRGs, and DGF and long-term graft survival predictive strategies were constructed based on these hub NRGs. Finally, we verified the expression of Cxcl1 and its effect on IRI and NETs generation in the mouse IRI model. Results: This study revealed two IRI clusters (C1 and C2 clusters) with different molecular features and clinical characteristics. Cluster C1 was characterized by active metabolism, mild inflammation and lower incidence of DGF, while Cluster C2 was inflammation activated subtype with a higher incidence of DGF. Besides, based on DGF-related hub NRGs, we successfully constructed robust DGF and long-term graft survival predictive strategies. The mouse renal IRI model verified that Cxcl1 was significantly upregulated in renal tissues after IRI, and using a CXCL8/CXCL1 inhibitor could significantly improve renal function, alleviate renal tubular necrosis, tissue inflammatory response, and NET formation. Conclusion: This study identified two distinct IRI clusters based on DE-NRGs and constructed robust prediction methods for DGF and graft survival, which can provide references for early prevention and individualized treatment of various postoperative complications after renal transplantation.


Assuntos
Armadilhas Extracelulares , Traumatismo por Reperfusão , Camundongos , Animais , Sobrevivência de Enxerto/genética , Função Retardada do Enxerto/genética , Traumatismo por Reperfusão/etiologia , Rim/fisiologia , Complicações Pós-Operatórias , Inflamação/complicações
9.
BMC Cancer ; 22(1): 1204, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36424540

RESUMO

Clear cell renal cell carcinoma (ccRCC) is a common malignant tumor of the urinary system characterized by poor prognosis and difficult treatment. It has been reported that iron metabolism dysregulation is a common phenomenon in ccRCC and is closely related to the process of ccRCC. But still now, the exact function and underlying mechanisms of iron metabolism dysregulation in ccRCC have not been fully elucidated. In this study, we comprehensively investigated the prognostic value and potential role of STEAP3 (an iron metabolism-related gene) in ccRCC. STEAP3 is significantly up-regulated in ccRCC. High STEAP3 expression is associated with gender, hemoglobin level, pathological grade, tumor stage and significantly predicts an unfavorable prognosis of ccRCC patients. Functional enrichment analysis and evaluation of the tumor microenvironment indicated that STEAP3 was involved in the remodeling of tumor extracellular matrix and the shaping of an immune-suppressive tumor microenvironment to promote tumor metastasis and evade immune killing. Besides, the expression of STEAP3 is also associated with the expression of various immune checkpoint molecules and the IC50 of targeted drugs. Finally, we verified STEAP3 by RT-qPCR and IHC staining. In conclusion, we found that STEAP3 can serve as a candidate prognostic biomarker for ccRCC, and targeting STEAP3 and its biological processes may provide new references for the individualized treatment of ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Microambiente Tumoral/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Prognóstico , Ferro
10.
Front Immunol ; 13: 1022380, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211432

RESUMO

In response to strong signals, several types of immune cells release extracellular traps (ETs), which are web-like structures consisting of DNA decorated with various protein substances. This process is most commonly observed in neutrophils. Over the past two decades, ET formation has been recognized as a unique mechanism of host defense and pathogen destruction. However, the role of ETs in sterile inflammation has only been studied extensively in recent years. Ischemia reperfusion injury (IRI) is a type of sterile inflammatory injury. Several studies have reported that ETs have an important role in IRI in various organs. In this review, we describe the release of ETs by various types of immune cells and focus on the mechanism underlying the formation of neutrophil ETs (NETs). In addition, we summarize the role of ETs in IRI in different organs and their effects on tumors. Finally, we discuss the value of ETs as a potential therapeutic target for organ IRI and present possible challenges in conducting studies on IRI-related ETs as well as future research directions and prospects.


Assuntos
Armadilhas Extracelulares , Traumatismo por Reperfusão , Humanos , Inflamação/metabolismo , Neutrófilos , Traumatismo por Reperfusão/metabolismo
11.
ACS Appl Mater Interfaces ; 14(41): 46738-46747, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36194853

RESUMO

The magneto-optical and dielectric behavior of M-type hexaferrites as permanent magnets in the THz band is essential for potential applications like microwave absorbers and antennas, while are rarely reported in recent years. In this work, single-phase SrFe12-xNbxO19 hexaferrite ceramics were prepared by the conventional solid-state sintering method. Temperature dependence of dielectric parameters was investigated here to determine the relationship between dielectric response and magnetic phase transition. The saturated magnetization increases by nearly 12%, while the coercive field decreases by 30% in the x = 0.03 composition compared to that of the x = 0.00 sample. Besides, the Nb substitution improves the magneto-optical behavior in the THz band by comparing the Faraday rotation parameter from 0.75 (x = 0.00) to 1.30 (x = 0.03). The changes in the magnetic properties are explained by a composition-driven increase of the net magnetic moment and enhanced ferromagnetic exchange coupling. The substitution of the donor dopant Nb on the Fe site is a feasible way to obtain multifunctional M-type hexaferrites as preferred candidates for permanent magnets, sensors, and other electronic devices.

12.
Front Surg ; 9: 894272, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35865042

RESUMO

Background: Clear cell renal cell carcinoma (CCRCC) is a common urological neoplasm, and even though surgical resection is effective for localized CCRCC, the prognosis of metastatic CCRCC is poor. Currently, there is a paucity of recognized effective therapeutic protocols for metastatic CCRCC. Case presentation: A 76-year-old Asian man underwent radical left nephrectomy for CCRCC 26 years ago; this patient visited our hospital with abdominal pain due to multiple abdominal metastases 24 years after the nephrectomy. After metastasectomy, he underwent targeted therapy combined with a programmed death receptor-1 (PD-1) inhibitor, and the current imaging results indicate remarkable tumor remission. Conclusions: Metachronous pancreatic metastasis from CCRCC after nephrectomy is rare, but clinicians and patients should not ignore this possibility. The combination of targeted therapy and immunotherapy can result in satisfactory outcomes in cases where metastatic CCRCC continues to progress despite metastasectomy and targeted therapy. The combination of local and systemic therapy can be an effective therapeutic protocol for metastatic CCRCC, but there is no consensus on suitable therapeutics.

13.
Stem Cell Res Ther ; 13(1): 297, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35841017

RESUMO

BACKGROUND: Human urine-derived stem cells (USCs)-derived exosomes (USC-Exo) could improve kidney ischemia/reperfusion injury (IRI), while the underlying mechanisms of this protective effect remain unclear. METHODS: Human USCs and USC-Exo were isolated and verified by morphology and specific biomarkers. The effects of USC-Exo on ferroptosis and kidney injury were detected in the IRI-induced acute kidney injury (AKI) model in C57BL/6 mice. The effects of USC-Exo on ferroptosis and lncRNA taurine-upregulated gene 1 (TUG1) were detected in hypoxia/reoxygenation (H/R)-treated human proximal tubular epithelial cells (HK-2). The interaction of SRSF1 and TUG1, ACSL4 was checked via RNA pull-down/RIP and RNA stability assays. The effects of LncRNA TUG1 on SRSF1/ACSL4-mediated ferroptosis were verified in H/R-treated HK-2 cells and the IRI-induced AKI mouse models. RESULTS: USC-Exo treatment improved kidney injury and ameliorated ferroptosis in IRI-induced AKI mouse models. USC-Exo were rich in lncRNA TUG1, which suppressed ferroptosis in HK-2 cells exposed to H/R. Mechanistically, lncRNA TUG1 regulates the stability of ACSL4 mRNA by interacting with RNA-binding protein SRSF1. In addition, SRSF1 upregulation or ACSL4 downregulation partially reversed the protective effect of lncRNA TUG1 on ferroptosis in H/R-treated HK-2 cells. Further, ACSL4 upregulation partially reversed TUG1's repression on kidney injury and ferroptosis in IRI-induced AKI mice. CONCLUSION: Collectively, lncRNA TUG1 carried by USC-Exo regulated ASCL4-mediated ferroptosis by interacting with SRSF1 and then protected IRI-induced AKI. Potentially, USC-Exo rich in lncRNA TUG1 can serve as a promising therapeutic method for IRI-AKI.


Assuntos
Injúria Renal Aguda , Ferroptose , RNA Longo não Codificante , Traumatismo por Reperfusão , Injúria Renal Aguda/genética , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/terapia , Animais , Ferroptose/genética , Humanos , Hipóxia/metabolismo , Isquemia/metabolismo , Rim/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/terapia , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Células-Tronco/metabolismo , Taurina/metabolismo
14.
Stem Cells Int ; 2022: 6852661, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646124

RESUMO

Background: MSC-derived extracellular vehicles (EVs) exhibit a protective functional role in renal ischemia/reperfusion injury (RIRI). Recent studies have revealed that mitophagy could be a potential target process in the treatment of RIRI. However, whether MSC-derived EVs are involved in the regulation of mitophagy in RIRI remains largely unknown to date. Methods: RIRI model was established in vivo in mice by subjecting them to renal ischemia/reperfusion. TCMK-1 cells were subjected to hypoxia/reoxygenation (H/R) stimulation to mimic RIRI in vitro. BMSCs and BMSC-derived EVs were isolated and identified. Renal injury was assessed using H&E staining. The qPCR and western blot analyses were conducted to detect the mRNA and protein levels. Apoptosis was evaluated using the TUNEL assay and flow cytometry analysis. The EVs, autophagosomes, and mitochondria were observed using TEM. The colocalization of autophagosomes with mitochondria was confirmed through the confocal assay. The direct binding of miR-223-3p to NLRP3 was validated through the dual-luciferase assay. Results: BMSCs and BMSC-derived EVs were successfully isolated from mice and identified. The protective effect of BMSC-derived EVs against RIRI was validated both in vitro and in vivo, which was indicated by a decrease in apoptosis and inflammasome activation and an increase in mitophagy. However, this protective effect was impaired in the miR-223-3p-depleted EVs, suggesting that miR-223-3p mediated this protective effect. Further mechanistic investigation revealed that miR-223-3p suppressed inflammasome activation to enhance mitophagy by directly targeting NLRP3. Conclusion: In conclusion, the protective role of BMSC-derived EVs and exosome-delivered miR-223-3p in RIRI was validated. Exogenous miR-223-3p directly targeted NLRP3 to attenuate inflammasome activation, thereby promoting mitophagy.

15.
J Immunol Res ; 2022: 3128933, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35733919

RESUMO

Tumorigenesis is a multistage progressive oncogenic process caused by alterations in the structure and expression level of multiple genes. Normal cells are continuously endowed with new capabilities in this evolution, leading to subsequent tumor formation. Immune cells are the most important components of inflammation, which is closely associated with tumorigenesis. There is a broad consensus in cancer research that inflammation and immune response facilitate tumor progression, infiltration, and metastasis via different mechanisms; however, their protumor effects are equally important in tumorigenesis at earlier stages. Previous studies have demonstrated that during the early stages of tumorigenesis, certain immune cells can promote the formation and proliferation of premalignant cells by inducing DNA damage and repair inhibition, releasing trophic/supporting signals, promoting immune escape, and activating inflammasomes, as well as enhance the characteristics of cancer stem cells. In this review, we focus on the potential mechanisms by which immune cells can promote tumor initiation and promotion in the early stages of tumorigenesis; furthermore, we discuss the interaction of the inflammatory environment and protumor immune cells with premalignant cells and cancer stem cells, as well as the possibility of early intervention in tumor formation by targeting these cellular mechanisms.


Assuntos
Carcinogênese , Neoplasias , Carcinogênese/metabolismo , Transformação Celular Neoplásica , Humanos , Inflamassomos , Inflamação/patologia
16.
BMC Cancer ; 22(1): 691, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739510

RESUMO

BACKGROUND: Renal cell carcinoma (RCC) is a third most common tumor of the urinary system. Nowadays, Immunotherapy is a hot topic in the treatment of solid tumors, especially for those tumors with pre-activated immune state. METHODS: In this study, we downloaded genomic and clinical data of RCC samples from The Cancer Genome Atlas (TCGA) database. Four immune-related genetic signatures were used to predict the prognosis of RCC by Cox regression analysis. Then we established a prognostic risk model consisting of the genes most related to prognosis from four signatures to value prognosis of the RCC samples via Kaplan-Meier (KM) survival analysis. An independent data from International Cancer Genome Consortium (ICGC) database were used to test the predictive stability of the model. Furthermore, we performed landscape analysis to assess the difference of gene mutant in the RCC samples from TCGA. Finally, we explored the correlation between the selected genes and the level of tumor immune infiltration via Tumor Immune Estimation Resource (TIMER) platform. RESULTS: We used four genetic signatures to construct prognostic risk models respectively and found that each of the models could divide the RCC samples into high- and low-risk groups with significantly different prognosis, especially in advanced RCC. A comprehensive prognostic risk model was constructed by 8 candidate genes from four signatures (HLA-B, HLA-A, HLA-DRA, IDO1, TAGAP, CIITA, PRF1 and CD8B) dividing the advanced RCC samples from TCGA database into high-risk and low-risk groups with a significant difference in cancer-specific survival (CSS). The stability of the model was verified by independent data from ICGC database. And the classification efficiency of the model was stable for the samples from different subgroups. Landscape analysis showed that mutation ratios of some genes were different between two risk groups. In addition, the expression levels of the selected genes were significantly correlated with the infiltration degree of immune cells in the advanced RCC. CONCLUSIONS: Sum up, eight immune-related genes were screened in our study to construct prognostic risk model with great predictive value for the prognosis of advanced RCC, and the genes were associated with infiltrating immune cells in tumors which have potential to conduct personalized treatment for advanced RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Biomarcadores Tumorais/genética , Carcinoma de Células Renais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Neoplasias Renais/patologia , Prognóstico , Fatores de Risco
17.
Front Oncol ; 12: 868639, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372083

RESUMO

Ferroptosis is a newly proposed programmed cell death that has great potential in limiting tumor progression and malignancies that are resistant to conventional therapies. However, recent reports have shown that ferroptosis in the tumor microenvironment can provide a favorable environment to promote tumor survival and progression, which is induced by the infiltration and polarization of pro-tumor immune cells and the dysfunction of anti-tumor immunity. In this mini-review, we introduce the mechanisms of ferroptosis, describe the crosstalk between ferroptosis and cancer, demonstrate the potential ways in which ferroptosis shapes the pro-tumor immune microenvironment, and present our thoughts on ferroptosis-based cancer therapies.

18.
Front Oncol ; 12: 815223, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35155251

RESUMO

INTRODUCTION: Clear cell renal cell carcinoma (ccRCC) is a malignant tumor characterized by poor prognosis and difficult treatment. Ferroptosis is a relatively new form of programmed cell death that involved in cancer development and therapy resistance. Studies have shown that targeted ferroptosis may be a novel option for the treatment of ccRCC, but key genes and their roles between ferroptosis and ccRCC are limited so far. This study aims to develop a ccRCC stratified model based on ferroptosis-related genes to provide a reference for the prognosis prediction and the individualized treatment of ccRCC. MATERIALS AND METHODS: The mRNAs expression data of ccRCC and FRGs were obtained from TCGA and FerrDb database, respectively. Through multiple analysis, a 4-FRG based prognostic stratified model was constructed and its predictive performance was validated through various methods. Then, a nomogram based on the model was constructed and ccRCC patients stratified by the model were analyzed for tumor microenvironment, immune infiltration, sensitivity for immune checkpoint inhibitors (ICIs)/traditional anti-tumor therapy and tumor mutation burden (TMB). Functional enrichment analysis was performed to explore potential biological pathways. Finally, we verified our model by RT-qPCR, siRNA transfection, scratch assay and CCK-8 assay. RESULTS: In this study, the stratified model and a model-based nomogram can accurately predict the prognosis of ccRCC patients in TCGA database. The patients stratified by the model showed different tumor microenvironments, immune infiltration, TMB, resistance to traditional and ICIs therapy, and sensitivity to ferroptosis. Functional enrichment analysis suggested several biological pathways related to the process and prognosis of ccRCC. RT-qPCR confirmed the differential expression of ferroptosis-related genes. Scratch assay and CCK-8 assay indicated the promotion effects of CD44 on the proliferation and migration of ccRCC. CONCLUSION: In this study, we established a novel ccRCC stratified model based on FRGs, which can accurately predict the prognosis of ccRCC patients and provide a reference for clinical individualized treatment.

19.
Clin Transplant ; 35(11): e14469, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34448256

RESUMO

Kidney transplantation is the best therapy for end-stage renal disease. Demand for kidney transplantation rises year-on-year, and the gap between kidney supply and demand remains large. To meet this clinical need, a gradual expansion in the supply of donors is required. However, clinics lack appropriate tools capable of quickly and accurately predicting post-transplant renal allograft function, and thus assess donor-kidney quality before transplantation. Mitochondrial DNA (mtDNA) is a key component of damage-associated molecular patterns (DAMPs) and plays an important part in ischemia-reperfusion injury (IRI), accelerating the progression of IRI by inducing inflammation and type I interferon responses. mtDNA is known to be closely involved in delayed graft function (DGF) and acute kidney injury (AKI) after transplantation. Thus, mtDNA is a potential biomarker able to predict post-transplant renal allograft function. This review summarizes mtDNA biology, the role mtDNA plays in renal transplantation, outlines advances in detecting mtDNA, and details mtDNA's able to predict post-transplant renal allograft function. We aim to elucidate the potential value of mtDNA as a biomarker in the prediction of IRI, and eventually provide help for predicting donor-kidney quality.


Assuntos
Transplante de Rim , Traumatismo por Reperfusão , Biomarcadores , DNA Mitocondrial/genética , Função Retardada do Enxerto , Humanos , Rim , Doadores de Tecidos
20.
Medicine (Baltimore) ; 100(34): e27025, 2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34449477

RESUMO

RATIONALE: Nephrogenic adenoma (NA) is a rare benign lesion of the urinary tract, which rarely occurs in the renal pelvis. Only 19 cases have been reported in the literature. However, there is no detailed report on the clinicopathological features of NA of the renal pelvis. PATIENT CONCERNS: This case report describes a 46-year-old male patient who was admitted to the hospital for one month because of painless gross hematuria with blood clots. He had a history of hyperuricemia and a family history of gastric cancer. DIAGNOSES: NA of the renal pelvis was diagnosed pathologically and immunohistochemical. INTERVENTIONS: The patient underwent laparoscopic nephroureterectomy. OUTCOMES: The patient recovered well after the operation with no discomfort. In addition, we followed up with the patient regularly post-discharge (approximately 20 months). There were no obvious abnormalities in the results of routine urine culture, computed tomography scan of the abdomen, and cystoscopy during the follow-up period, and the symptoms disappeared completely and did not recur. LESSONS: NA of the renal pelvis is extremely rare in the clinic, which can be easily misdiagnosed and overtreated. However, for pathological diagnosis of this disease, specific immunohistochemical staining for preoperative biopsy was reported to be significant, which should be considered by the urologists and pathologists.


Assuntos
Adenoma/patologia , Neoplasias Renais/patologia , Pelve Renal/patologia , Adenoma/diagnóstico , Adenoma/cirurgia , Humanos , Neoplasias Renais/diagnóstico , Neoplasias Renais/cirurgia , Pelve Renal/cirurgia , Laparoscopia , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Nefroureterectomia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...