Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 45(2): 1107-1117, 2024 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471948

RESUMO

Novel Fe-Mn combined graphene oxide (GO-FM) material was produced and tested for its efficacy in remediating agricultural soil co-contaminated by Cd and As. In a 60-day soil incubation experiment, the remediation mechanism and immobilization effects of GO and GO-FM at different addition ratios (0.1%, 0.2%, and 0.3%) were investigated in Shangyu and Foshan soils, which had varying physicochemical properties and contamination degrees. The dynamic changes in pH, DOC concentration, bioavailable Cd and As content, and morphology of Cd and As were explored to determine the remediation efficacy of the materials. The results demonstrated that compared with that in the blank control, GO-FM increased the pH in Shangyu soil but decreased the pH in Foshan soil. After culture, both GO and GO-FM increased the soil DOC content. GO-FM decreased the soluble Cd concentration by 5.08%-19.19% and the bioavailability of Cd by 36.57%-42.8% in Foshan soil, and the main immobilization mechanism was electrostatic adsorption, complexation, and hydroxylated metal ion formation. The immobilization ability of GO-FM on Cd was lower than that of Foshan soil due to the influence of electrostatic repulsion in Shangyu acidic soil. However, with the increase in the amount of GO-FM, the trend of increasing the bioavailability of Cd by graphene oxide was inhibited. The addition of 0.2% and 0.3% GO-FM decreased the bioavailability of Cd by 6.45%-13.56% in Shangyu soil. Additionally, GO-FM decreased the bioavailability of As in Shangyu soil and Foshan soil by 4.34%-9.15% and 0.87%-5.71%, respectively. This was due to the immobilization mechanism of oxidation of As by manganese oxides and inner surface chelate between As and the surface hydroxyl group of iron oxides. In summary, the immobilization effect of GO-FM on Cd in Foshan soil was better than that in Shangyu soil, and the immobilization effect of GO-FM on As in Shangyu soil was better than that in Foshan soil, which can provide a theoretical basis and reference for the prevention and control of Cd and As co-contamination in different types of soil.

2.
Huan Jing Ke Xue ; 45(1): 450-458, 2024 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-38216494

RESUMO

In this study, iron-calcium material (FC) and hickory-cattail biochar (BC) were applied to prepare composite material (BF), which was used to repair the combined pollution of cadmium and arsenic in paddy soil to reduce the content of cadmium (Cd) and arsenic (As) in rice grain. Soil pore water, rhizosphere soil, bulk soil, rice plants, and root iron plaque samples were collected during the growth period of rice in a pot experiment to explore the effects and mechanism of FC, BC, and BF on the bioavailability of Cd and As in paddy soil and their contents in plants. The results showed that biochar could significantly (P < 0.05) increase the pH value of bulk soil (0.55-0.66 units) and rhizosphere soil (0.28-0.36 units) and elevate the soil dissolved organic carbon (DOC) content. FC material could significantly (P < 0.05) reduce the pH of bulk soil (0.14-0.27 units) and rhizosphere soil (0.38-0.41 units), as well as the soil DOC content. Iron-calcium materials and composite could simultaneously reduce the contents of available Cd and As in soil pore water, rhizosphere soil, and bulk soil, whereas biochar could reduce the content of Cd but increase the content of As. Among them, a 1% addition of composite had the best effect. The available Cd and As in soil decreased by 41.8%-48.2% and 6.1%-10.1%, respectively. Biochar, iron-calcium materials, and composites improved plant biomass (dry weight of root, stem, leaf, and grain). For example, the dry weights of rice grains under these treatments were higher (48.5%-184.0%) than that of CK, as was the root iron plaque content (7.5%-13.6%). Compared with that in the CK, biochar could effectively reduce the Cd content in rice grain by 21.0%-26.1%. Iron-calcium material and composite could simultaneously reduce the Cd and As contents in rice grain. Among them, the BF treatment had the best effect on the reduction of Cd and As in rice grain, with a decrease of 36.9%-42.0% and 40.4%-44.4%, respectively. The Cd and As contents in rice grain were lower than the national standard values (GB 2762-2017).


Assuntos
Arsênio , Oryza , Poluentes do Solo , Ferro/análise , Cádmio/análise , Arsênio/análise , Cálcio , Solo/química , Carvão Vegetal/química , Água , Poluentes do Solo/análise
3.
Huan Jing Ke Xue ; 43(3): 1584-1595, 2022 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-35258223

RESUMO

A Fe-Mn oxide-microbe combined biochar (FM-DB) was prepared to simultaneously remove Cd(Ⅱ) and As(Ⅲ) contamination in an aqueous system. In the FM-DB, the best ratio of Fe-Mn oxide (FMBO) and carya cathayensis shell biochar (CCSB) was 3%+3%. The material had good acid resistance, mechanical strength, and mass transfer performance, and the maximum removal rates for Cd(Ⅱ) and As(Ⅲ) in the binary system were 77.29% and 99.94%, respectively. Characterization confirmed that the FM-DB was successfully prepared and had a rich functional group structure. The single-factor adsorption test results for Cd(Ⅱ) and As(Ⅲ) showed that the composite material had a certain adsorption capacity affected by initial pH, equilibration time, and initial concentration for Cd(Ⅱ) and As(Ⅲ) under different conditions. The adsorption isotherm and kinetic data indicated the adsorption equilibrium time for Cd(Ⅱ) and As(Ⅲ) was 3.5 h and 8 h, and the maximum capacity was 59.27 mg·g-1and 84.73 mg·g-1, respectively. The adsorption of Cd(Ⅱ) and As(Ⅲ) was mainly affected by the electron exchange, electron sharing, and complexation on the surface of the material. The whole adsorption process was a combination of single-layer adsorption and multi-layer adsorption on an uneven surface. The adsorption process was a multi-step process, including outer surface diffusion and inner particle diffusion. In addition, comparing the removal rate of composite materials in the single-component system and the binary system, a mutual promotion of adsorption between Cd(Ⅱ) and As(Ⅲ) was found under the binary system. In conclusion, oxide-microbe combined biochar could be an efficient adsorption material and was suitable for the remediation of aqueous system pollution caused by Cd(Ⅱ) and As(Ⅲ).


Assuntos
Óxidos , Poluentes Químicos da Água , Adsorção , Cádmio/análise , Carvão Vegetal/química , Cinética , Óxidos/química , Poluentes Químicos da Água/análise
4.
Huan Jing Ke Xue ; 42(7): 3535-3548, 2021 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-34212680

RESUMO

Two iron-based materials, Fe-Ca composite (FeCa) and Fe-Mn binary oxide (FMBO), were applied to immobilize As, Pb, and Cd in heavy metal contaminated paddy soils. Seven kinds of paddy soil (tidal soil) contaminated by arsenic, lead and cadmium were collected from Shangyu, Shaoxing (SY), Foshan, Guangdong (FS), Shaoguan, Guangdong (SG), LiuYang, Hunan (LY), Ganzhou, Jiangxi (GZ), Dushan, Guizhou (DS), and Ma'anshan, Anhui (MAS). The effects of iron-based materials on the dynamic changes of As, Pb, and Cd concentration in soil solution, the stabilization efficacy of available As, Pb, and Cd in soil, and the effects of soil types and properties on stabilization efficacy were studied through soil incubation experiment. The results showed that the content of soil dissolved As, Pb, and Cd were lower in iron-based material treatments than in control throughout the incubation. The addition of two iron-based materials significantly reduced the availability of Cd, Pb, and As. Moreover, the stabilization efficiency of FeCa for As was higher than FMBO, but no significant difference was found in the stabilization efficiency of Pb and Cd between two materials. The stabilization efficiency of As, Pb, and Cd in FeCa treatments could be ordered as GZ > SG > DS and MAS; FS>SY, LY, and SG>MAS; SY, GZ, and DS>MAS, respectively. While the stabilization efficiency for As, Pb, and Cd in FMBO could be ordered as SY, LY, and GZ > DS > FS; FS > GZ > SY; DS > LY > MAS, respectively. In addition, the statistical results showed that the stabilization efficiencies of various soils under the treatment of iron-based materials were significantly correlated with sand content (negatively correlated for As), soil pH (positively correlated for Pb), and clay content (negatively correlated for Cd). In conclusion, the two iron-based materials evaluated in this study may be effective stabilization agents for remediating different types of arsenic-, lead-, and cadmium-contaminated soils.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Cádmio/análise , Ferro , Chumbo , Solo , Poluentes do Solo/análise
5.
J Hazard Mater ; 414: 125494, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33652225

RESUMO

There is growing global interest in the bioremediation of cadmium (Cd) using combinations of biochar and microorganisms. However, the interactions among biochar, introduced and indigenous microorganisms remain unclear. Accordingly, a 90 day microcosm experiment was conducted to investigate this by adding Bacillus sp. K1 strain inoculated rice straw biochar (SBB) and magnetic straw biochar (MBB) into a Cd contaminated paddy soil from Hunan, China. All treatments were incubated aerobically (60% water holding capacity) or anaerobically for 90 d. During both soil incubations, Bacillus sp. K1 successfully colonized in soil with composites applications. Soil pH was significantly increased from acid to neutral, and available Cd decreased with the addition of both composites. The better remediation efficiency of MBB than SBB under anerobic conditions was attributed to the transformation of acetic acid-extractable Cd into the residual fraction, caused by Cd2+ bonding with crystal Fe3O4. The application of the two kinds of composites caused similar changes to both microbial communities. There was a slight decrease in indigenous microbial alpha diversity with the MBB aerobic application, while the total population number of bacteria was increased by 700%. Both the redundancy analysis and Mantel analyses indicated that pH and microbial biomass C contributed to the colonization of Bacillus sp. K1 with SBB under aerobic conditions, and with MBB under anerobic conditions, respectively. The research provides a new insight into interactive effects and investigates immobilization mechanisms involved of bacterial/biochar composites in anaerobic and aerobic soils.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Carvão Vegetal , China , Fenômenos Magnéticos , Solo , Poluentes do Solo/análise
6.
J Hazard Mater ; 394: 122507, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32200238

RESUMO

The present study used calcium-based magnetic biochar (Ca-MBC), a novel material made through pyrolyzing rice straw impregnated with iron oxide (Fe3O4) and calcium carbonate (CaCO3) under oxygen-limited conditions, to reduce arsenic (As) accumulation in rice plants (Oryza sativa L.) through a 130-day pot experiment. The BCR (European Community Bureau of Reference) sequential extraction confirmed that Ca-MBC decreased the unstable fraction of As through transforming to the stable fraction at both tillering stage and maturity. The addition of Ca-MBC decreased while the pristine biochar increased the concentrations of NH4H2PO4- and BCR-extracted As. The µ-XRF test revealed that iron oxide on the Ca-MBC played an important role in decreasing As bioavailability. The addition of Ca-MBC greatly decreased As concentration in rice grains, mainly due to (1) the decreases in bioavailability of As in soil and (2) adsorption of As in pore water by Ca-MBC; and (3) the enhanced formation of iron plaque that acted as a barrier for plant As uptake. Furthermore, the addition of Ca-MBC at 1% but not 2% promoted plant growth. The results suggest that Ca-MBC can be used as an efficient material to lower As accumulation in grains and promote plant growth in rice paddy fields.


Assuntos
Arsênio/química , Carvão Vegetal/química , Recuperação e Remediação Ambiental/métodos , Oryza/metabolismo , Poluentes do Solo/química , Solo/química , Adsorção , Arsênio/metabolismo , Carbonato de Cálcio/química , Óxido Ferroso-Férrico/química , Concentração de Íons de Hidrogênio , Ferro/metabolismo , Oryza/química , Poluentes do Solo/metabolismo
7.
Environ Pollut ; 260: 114098, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32041084

RESUMO

Zeolite-supported nanoscale zero-valent iron (Z-NZVI) has great potential for metal(loid) removal, but its encapsulation mechanisms and ecological risks in real soil systems are not completely clear. We conducted long-term incubation experiments to gain new insights into the interactions between metal(loid)s (Cd, Pb, As) and Z-NZVI in naturally contaminated farmland soils, as well as the alteration of indigenous bacterial communities during soil remediation. With the pH-adjusting and adsorption capacities, 30 g kg-1 Z-NZVI amendment significantly decreased the available metal(loid) concentrations by 10.2-96.8% and transformed them into strongly-bound fractions in acidic and alkaline soils after 180 d. An innovative magnetic separation of Z-NZVI from soils followed by XRD and XPS characterizations revealed that B-type ternary complexation, heterogeneous coprecipitation, and/or concurrent redox reactions of metal(loid)s, especially the formation of Cd3(AsO4)2, PbFe2(AsO4)2(OH)2, and As0, occurred only under specific soil conditions. Sequencing of 16S rDNA using Illumina MiSeq platform indicated that temporary shifts in iron-resistant/sensitive, pH-sensitive, denitrifying, and metal-resistant bacteria after Z-NZVI addition were ultimately eliminated because soil characteristics drove the re-establishment of indigenous bacterial community. Meanwhile, Z-NZVI recovered the basic activities of bacterial DNA replication and denitrification functions in soils. These results confirm that Z-NZVI is promising for the long-term remediation of metal(loid)s contaminated farmland soil without significant ecotoxicity.


Assuntos
Recuperação e Remediação Ambiental , Metais , Poluentes do Solo , Zeolitas , Arsênio , Cádmio , Fazendas , Ferro , Solo
8.
J Hazard Mater ; 387: 122010, 2020 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-31927353

RESUMO

This study developed a novel calcium-based magnetic biochar by pyrolysing rice straw mixed with calcium carbonate and iron oxide for stabilization of contamination of multiple metals. A 160-day incubation study was conducted to investigate its performance in stabilization of cadmium and arsenic co-contamination in soil. Both biochar and Ca-MBC treatments increased soil pH, decreased the bioavailability of cadmium. Ca-MBC decreased but biochar enhanced the bioavailability of arsenic. The BCR (European Community Bureau of Reference) sequential extraction confirmed Ca-MBC facilitated the transformation of the unstable fraction of arsenic to stable fractions. The stabilization mechanisms were explored through synchrotron-based micro X-ray fluorescence and X-ray absorption near edge structure. The results show that Ca-MBC remediated the dual contamination of arsenic and cadmium through (1) elevated pH and cation exchange capacity (for Cd); (2) the formation of bi-dentate chelate and ternary surface complexes on the surface of iron oxide; (3) enhanced adsorption ability of porous biochar. In addition, Ca-MBC increased the abundance and diversity of bacterial community, and modified the relative abundances of bacterial taxa, leading to a shift of the composition. These new insights provide valuable information for stabilization of co-contamination of arsenic and cadmium in soil using the potential material Ca-MBC.


Assuntos
Arsênio/química , Cádmio/química , Carvão Vegetal/química , Poluentes do Solo/química , Solo/química , Bactérias/efeitos dos fármacos , Carbonato de Cálcio/química , Carvão Vegetal/farmacologia , Óxido Ferroso-Férrico/química , Oryza/química , Microbiologia do Solo
9.
J Hazard Mater ; 348: 10-19, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29367128

RESUMO

A novel calcium-based magnetic biochar (Ca-MBC), made by pyrolyzing the mixture of rice straw, iron oxide (Fe3O4) and calcium carbonate (CaCO3), was developed in this study for remediation of co-pollution of arsenic and cadmium. Characteristics of the material showed that Fe3O4 and CaCO3 were adhered on the surface of biochar. The experiments on the effects of pH, adsorption kinetics and isotherm revealed that the Ca-MBC had a great ability to adsorb arsenic and cadmium within 0.5 h for cadmium and 12 h for arsenic with a maximum adsorption capacity of 6.34 and 10.07 mg g-1, respectively, and that the adsorption of both metals was pH-dependent from 2 to 12 with an optimal pH of pH 5. The mechanism of co-adsorption of Cd(II) and As(III) included both competitive and synergistic effects. The presence of As(III) enhanced Cd(II) adsorption by 3-16% while Cd(II) addition suppressed As(III) adsorption by 15-33%. The synergistic effects on As(III) and Cd(II) adsorption had resulted from the electrostatic interaction and the formation of type B ternary surface complexes. These new insights provide valuable information for the application of Ca-MBC as a potential adsorbent in treatment of water contaminated with As(III) and Cd(II).


Assuntos
Arsênio/química , Cádmio/química , Carbonato de Cálcio/química , Carvão Vegetal/química , Recuperação e Remediação Ambiental/métodos , Óxido Ferroso-Férrico/química , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Fenômenos Magnéticos , Oryza , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...