Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951984

RESUMO

The cost of annual energy consumption in buildings in the United States exceeds 430 billion dollars ( Science 2019, 364 (6442), 760-763), of which about 48% is used for space thermal management (https://www.iea.org/reports/global-status-report-for-buildings-and-construction-2019), revealing the urgent need for efficient thermal management of buildings and dwellings. Radiative cooling technologies, combined with the booming photonic and microfabrication technologies ( Nature 2014, 515 (7528), 540-544), enable energy-free cooling by radiative heat transfer to outer space through the atmospheric transparent window ( Nat. Commun. 2024, 15 (1), 815). To pursue all-season energy savings in climates with large temperature variations, switchable and tunable radiative coolers (STRC) have emerged in recent years and quickly gained broad attention. This Perspective introduces the existing STRC technologies and analyzes their benefits and challenges in future large-scale applications, suggesting ways for the development of future STRCs.

2.
Sci Adv ; 10(25): eadn6426, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38896628

RESUMO

Phase transformations have been a prominent topic of study for both fundamental and applied science. Solid-liquid reaction-induced phase transformations can be hard to characterize, and the transformation mechanisms are often not fully understood. Here, we report reversible phase transformations between a metal (Pb) nanocrystal and a viscous liquid-like phase unveiled by in situ liquid cell transmission electron microscopy. The reversible phase transformations are obtained by modulating the electron current density (between 1000 and 3000 electrons Å-2 s-1). The metal-organic viscous liquid-like phase exhibits short-range ordering with a preferred Pb-Pb distance of 0.5 nm. Assisted by density functional theory and molecular dynamics calculations, we show that the viscous liquid-like phase results from the reactions of Pb with the CH3O fragments from the triethylene glycol solution under electron beam irradiation. Such reversible phase transformations may find broad implementations.

3.
Adv Mater ; 36(21): e2311568, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588584

RESUMO

The electronic and optical properties of 2D transition metal dichalcogenides are dominated by strong excitonic resonances. Exciton dynamics plays a critical role in the functionality and performance of many miniaturized 2D optoelectronic devices; however, the measurement of nanoscale excitonic behaviors remains challenging. Here, a near-field transient nanoscopy is reported to probe exciton dynamics beyond the diffraction limit. Exciton recombination and exciton-exciton annihilation processes in monolayer and bilayer MoS2 are studied as the proof-of-concept demonstration. Moreover, with the capability to access local sites, intriguing exciton dynamics near the monolayer-bilayer interface and at the MoS2 nano-wrinkles are resolved. Such nanoscale resolution highlights the potential of this transient nanoscopy for fundamental investigation of exciton physics and further optimization of functional devices.

4.
Nano Lett ; 23(19): 9020-9025, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37724920

RESUMO

Biological nervous systems rely on the coordination of billions of neurons with complex, dynamic connectivity to enable the ability to process information and form memories. In turn, artificial intelligence and neuromorphic computing platforms have sought to mimic biological cognition through software-based neural networks and hardware demonstrations utilizing memristive circuitry with fixed dynamics. To incorporate the advantages of tunable dynamic software implementations of neural networks into hardware, we develop a proof-of-concept artificial synapse with adaptable resistivity. This synapse leverages the photothermally induced local phase transition of VO2 thin films by temporally modulated laser pulses. Such a process quickly modifies the conductivity of the film site-selectively by a factor of 500 to "activate" these neurons and store "memory" by applying varying bias voltages to induce self-sustained Joule heating between electrodes after activation with a laser. These synapses are demonstrated to undergo a complete heating and cooling cycle in less than 120 ns.

5.
Nat Commun ; 14(1): 6014, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37758708

RESUMO

The twisted stacking of two layered crystals has led to the emerging moiré physics as well as intriguing chiral phenomena such as chiral phonon and photon generation. In this work, we identified and theoretically formulated a non-trivial twist-enabled coupling mechanism in twisted bilayer photonic crystal (TBPC), which connects the bound state in the continuum (BIC) mode to the free space through the twist-enabled channel. Moreover, the radiation from TBPC hosts an optical vortex in the far field with both odd and even topological orders. We quantitatively analyzed the twist-enabled coupling between the BIC mode and other non-local modes in the photonic crystals, giving rise to radiation carrying orbital angular momentum. The optical vortex generation is robust against geometric disturbance, making TBPC a promising platform for well-defined vortex generation. As a result, TBPCs not only provide a new approach to manipulating the angular momentum of photons, but may also enable novel applications in integrated optical information processing and optical tweezers. Our work broadens the field of moiré photonics and paves the way toward the novel application of moiré physics.

6.
Opt Express ; 31(9): 14367-14376, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37157302

RESUMO

Miniaturized spectrometers in the mid-infrared (MIR) are critical in developing next-generation portable electronics for advanced sensing and analysis. The bulky gratings or detector/filter arrays in conventional micro-spectrometers set a physical limitation to their miniaturization. In this work, we demonstrate a single-pixel MIR micro-spectrometer that reconstructs the sample transmission spectrum by a spectrally dispersed light source instead of spatially grated light beams. The spectrally tunable MIR light source is realized based on the thermal emissivity engineered via the metal-insulator phase transition of vanadium dioxide (VO2). We validate the performance by showing that the transmission spectrum of a magnesium fluoride (MgF2) sample can be computationally reconstructed from sensor responses at varied light source temperatures. With potentially minimum footprint due to the array-free design, our work opens the possibility where compact MIR spectrometers are integrated into portable electronic systems for versatile applications.

7.
Nano Lett ; 23(4): 1445-1450, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36695528

RESUMO

Carrier distribution and dynamics in semiconductor materials often govern their physical properties that are critical to functionalities and performance in industrial applications. The continued miniaturization of electronic and photonic devices calls for tools to probe carrier behavior in semiconductors simultaneously at the picosecond time and nanometer length scales. Here, we report pump-probe optical nanoscopy in the visible-near-infrared spectral region to characterize the carrier dynamics in silicon nanostructures. By coupling experiments with the point-dipole model, we resolve the size-dependent photoexcited carrier lifetime in individual silicon nanowires. We further demonstrate local carrier decay time mapping in silicon nanostructures with a sub-50 nm spatial resolution. Our study enables the nanoimaging of ultrafast carrier kinetics, which will find promising applications in the future design of a broad range of electronic, photonic, and optoelectronic devices.

8.
Phys Rev Lett ; 129(24): 245701, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36563252

RESUMO

In a first-order phase transition, critical nucleus size governs nucleation kinetics, but the direct experimental test of the theory and determination of the critical nucleation size have been achieved only recently in the case of ice formation in supercooled water. The widely known metal-insulator phase transition (MIT) in strongly correlated VO_{2} is a first-order electronic phase transition coupled with a solid-solid structural transformation. It is unclear whether classical nucleation theory applies in such a complex case. In this Letter, we directly measure the critical nucleus size of the MIT by introducing size-controlled nanoscale nucleation seeds with focused ion irradiation at the surface of a deeply supercooled metal phase of VO_{2}. The results compare favorably with classical nucleation theory and are further explained by phase-field modeling. This Letter validates the application of classical nucleation theory as a parametrizable model to describe phase transitions of strongly correlated electron materials.

9.
Nano Lett ; 22(22): 9027-9035, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36346996

RESUMO

Twisted stacking of van der Waals materials with moiré superlattices offers a new way to tailor their physical properties via engineering of the crystal symmetry. Unlike well-studied twisted bilayers, little is known about the overall symmetry and symmetry-driven physical properties of continuously supertwisted multilayer structures. Here, using polarization-resolved second harmonic generation (SHG) microscopy, we report threefold (C3) rotational symmetry breaking in supertwisted WS2 spirals grown on non-Euclidean surfaces, contrasting the intact symmetry of individual monolayers. This symmetry breaking is attributed to a geometrical magnifying effect in which small relative strain between adjacent twisted layers (heterostrain), verified by Raman spectroscopy and multiphysics simulations, generates significant distortion in the moiré pattern. Density-functional theory calculations can explain the C3 symmetry breaking and unusual SHG response by the interlayer wave function coupling. These findings thus pave the way for further developments in the so-called "3D twistronics".

10.
Nat Commun ; 13(1): 4901, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35987993

RESUMO

Understanding thermal transport across metal/semiconductor interfaces is crucial for the heat dissipation of electronics. The dominant heat carriers in non-metals, phonons, are thought to transport elastically across most interfaces, except for a few extreme cases where the two materials that formed the interface are highly dissimilar with a large difference in Debye temperature. In this work, we show that even for two materials with similar Debye temperatures (Al/Si, Al/GaN), a substantial portion of phonons will transport inelastically across their interfaces at high temperatures, significantly enhancing interface thermal conductance. Moreover, we find that interface sharpness strongly affects phonon transport process. For atomically sharp interfaces, phonons are allowed to transport inelastically and interface thermal conductance linearly increases at high temperatures. With a diffuse interface, inelastic phonon transport diminishes. Our results provide new insights on phonon transport across interfaces and open up opportunities for engineering interface thermal conductance specifically for materials of relevance to microelectronics.

11.
Chem Rev ; 122(19): 15450-15500, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-35894820

RESUMO

Phase transitions can occur in certain materials such as transition metal oxides (TMOs) and chalcogenides when there is a change in external conditions such as temperature and pressure. Along with phase transitions in these phase change materials (PCMs) come dramatic contrasts in various physical properties, which can be engineered to manipulate electrons, photons, polaritons, and phonons at the nanoscale, offering new opportunities for reconfigurable, active nanodevices. In this review, we particularly discuss phase-transition-enabled active nanotechnologies in nonvolatile electrical memory, tunable metamaterials, and metasurfaces for manipulation of both free-space photons and in-plane polaritons, and multifunctional emissivity control in the infrared (IR) spectrum. The fundamentals of PCMs are first introduced to explain the origins and principles of phase transitions. Thereafter, we discuss multiphysical nanodevices for electronic, photonic, and thermal management, attesting to the broad applications and exciting promises of PCMs. Emerging trends and valuable applications in all-optical neuromorphic devices, thermal data storage, and encryption are outlined in the end.

12.
Phys Rev Lett ; 128(8): 085901, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35275649

RESUMO

Isotopically purified semiconductors potentially dissipate heat better than their natural, isotopically mixed counterparts as they have higher thermal conductivity (κ). But the benefit is low for Si at room temperature, amounting to only ∼10% higher κ for bulk ^{28}Si than for bulk natural Si (^{nat}Si). We show that in stark contrast to this bulk behavior, ^{28}Si (99.92% enriched) nanowires have up to 150% higher κ than ^{nat}Si nanowires with similar diameters and surface morphology. Using a first-principles phonon dispersion model, this giant isotope effect is attributed to a mutual enhancement of isotope scattering and surface scattering of phonons in ^{nat}Si nanowires, correlated via transmission of phonons to the native amorphous SiO_{2} shell. The Letter discovers the strongest isotope effect of κ at room temperature among all materials reported to date and inspires potential applications of isotopically enriched semiconductors in microelectronics.

13.
Science ; 374(6574): 1504-1509, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34914515

RESUMO

The sky is a natural heat sink that has been extensively used for passive radiative cooling of households. A lot of focus has been on maximizing the radiative cooling power of roof coating in the hot daytime using static, cooling-optimized material properties. However, the resultant overcooling in cold night or winter times exacerbates the heating cost, especially in climates where heating dominates energy consumption. We approached thermal regulation from an all-season perspective by developing a mechanically flexible coating that adapts its thermal emittance to different ambient temperatures. The fabricated temperature-adaptive radiative coating (TARC) optimally absorbs the solar energy and automatically switches thermal emittance from 0.20 for ambient temperatures lower than 15°C to 0.90 for temperatures above 30°C, driven by a photonically amplified metal-insulator transition. Simulations show that this system outperforms existing roof coatings for energy saving in most climates, especially those with substantial seasonal variations.

14.
ACS Appl Mater Interfaces ; 13(41): 48981-48987, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34612637

RESUMO

Merging the properties of VO2 and van der Waals (vdW) materials has given rise to novel tunable photonic devices. Despite recent studies on the effect of the phase change of VO2 on tuning near-field optical response of phonon polaritons in the infrared range, active tuning of optical phonons (OPhs) using far-field techniques has been scarce. Here, we investigate the tunability of OPhs of α-MoO3 in a multilayer structure with VO2. Our experiments show the frequency and intensity tuning of 2 cm-1 and 11% for OPhs in the [100] direction and 2 cm-1 and 28% for OPhs in the [010] crystal direction of α-MoO3. Using the effective medium theory and dielectric models of each layer, we verify these findings with simulations. We then use loss tangent analysis and remove the effect of the substrate to understand the origin of these spectral characteristics. We expect that these findings will assist in intelligently designing tunable photonic devices for infrared applications, such as tunable camouflage and radiative cooling devices.

15.
Phys Rev Lett ; 126(22): 223601, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34152166

RESUMO

The new physics of magic-angle twisted bilayer graphene (TBG) motivated extensive studies of flat bands hosted by moiré superlattices in van der Waals structures, inspiring the investigations into their photonic counterparts with potential applications including Bose-Einstein condensation. However, correlation between photonic flat bands and bilayer photonic moiré systems remains unexplored, impeding further development of moiré photonics. In this work, we formulate a coupled-mode theory for low-angle twisted bilayer honeycomb photonic crystals as a close analogy of TBG, discovering magic-angle photonic flat bands with a non-Anderson-type localization. Moreover, the interlayer separation constitutes a convenient degree of freedom in tuning photonic moiré bands without high pressure. A phase diagram is constructed to correlate the twist angle and separation dependencies to the photonic magic angles. Our findings reveal a salient correspondence between fermionic and bosonic moiré systems and pave the avenue toward novel applications through advanced photonic band or state engineering.

17.
Nano Lett ; 21(5): 2183-2190, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33645993

RESUMO

Defective graphene holds great potential to enable the permeation of gas molecules at high rates with high selectivity due to its one-atom thickness and resultant atomically small pores at the defect sites. However, precise control and tuning of the size and density of the defects remain challenging. In this work, we introduce atomic-scale defects into bilayer graphene via a decoupled strategy of defect nucleation using helium ion irradiation followed by defect expansion using hydrogen plasma treatment. The cotreated membranes exhibit high permeability and simultaneously high selectivity compared to those singly treated by ion irradiation or hydrogen plasma only. High permeation selectivity values for H2/N2 and H2/CH4 of 495 and 877, respectively, are achieved for optimally cotreated membranes. The method presented can also be scaled up to prepare large-area membranes for gas separation, e.g., for hydrogen purification and recovery from H2/CH4 and H2/N2 mixtures.

18.
Phys Rev Lett ; 125(22): 226403, 2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33315461

RESUMO

Graphene interfacing hexagonal boron nitride (h-BN) forms lateral moiré superlattices that host a wide range of new physical effects such as the creation of secondary Dirac points and band gap opening. A delicate control of the twist angle between the two layers is required as the effects weaken or disappear at large twist angles. In this Letter, we show that these effects can be reinstated in large-angle (∼1.8°) graphene/h-BN moiré superlattices under high pressures. A graphene/h-BN moiré superlattice microdevice is fabricated directly on the diamond culet of a diamond anvil cell, where pressure up to 8.3 GPa is applied. The band gap at the primary Dirac point is opened by 40-60 meV, and fingerprints of the second Dirac band gap are also observed in the valence band. Theoretical calculations confirm the band engineering with pressure in large-angle graphene/h-BN bilayers.

19.
Opt Express ; 28(26): 39203-39215, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33379475

RESUMO

We experimentally investigate the semiconductor-to-metal transition (SMT) in vanadium dioxide thin films using an infrared thermographic technique. During the semiconductor to metal phase change process, VO2 optical properties dynamically change and infrared emission undergoes a hysteresis loop due to differences between heating and cooling stages. The shape of the hysteresis loop was accurately monitored under different dynamic heating/cooling rates. In order to quantify and understand the effects of different rates, we used a numerical modelling approach in which a VO2 thin layer was modeled as metamaterial. The main experimental findings are interpreted assuming that both the rate of formation and shape of metallic inclusions are tuned with the heating/cooling rate. The structural transition from monoclinic to tetragonal phases is the main mechanism for controlling the global properties of the phase transition. However, our experimental results reveal that the dynamics of the heating/cooling process can become a useful parameter for further tuning options and lays out a macroscopic optical sensing scheme for the microscopic phase change dynamics of VO2. Our study sheds light on phase-transition dynamics and their effect on the infrared emission spectra of VO2 thin films, therefore enabling the heating/cooling rate to be an additional parameter to control infrared emission characteristics of thermal emitters. The hysteresis loop represents the phase coexistence region, thus being of fundamental importance for several applications, such as the operation of radiative thermal logic elements based on phase transition materials. For such applications, the phase transition region is shifted for heating and cooling processes. We also show that, depending on the way the phase change elements are heated, the temperature operation range will be slightly modified.

20.
Sci Adv ; 6(50)2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33298452

RESUMO

Thermography detects surface temperature and subsurface thermal activity of an object based on the Stefan-Boltzmann law. Impacts of the technology would be more far-reaching with finer thermal sensitivity, called noise-equivalent differential temperature (NEDT). Existing efforts to advance NEDT are all focused on improving registration of radiation signals with better cameras, driving the number close to the end of the roadmap at 20 to 40 mK. In this work, we take a distinct approach of sensitizing surface radiation against minute temperature variation of the object. The emissivity of the thermal imaging sensitizer (TIS) rises abruptly at a preprogrammed temperature, driven by a metal-insulator transition in cooperation with photonic resonance in the structure. The NEDT is refined by over 15 times with the TIS to achieve single-digit millikelvin resolution near room temperature, empowering ambient thermography for a broad range of applications such as in operando electronics analysis and early cancer screening.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...