Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurorobot ; 16: 1099656, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699951

RESUMO

In general, the traditional spacecraft semi-physical docking tests include the evaluation of docking and separation performance. However, these tests often rely on "specific" equipment, such as specially designed actuators and fast-response hydraulic systems, to meet the stringent dynamic response requirements of semi-physical testing. In this paper, a novel docking test platform is designed based on a general-purpose industrial manipulator using 3-D force and 3-D torque sensors. Different from the traditional solution, this novel platform is well-assembled and cost-effective. Furthermore, an actuation delay compensation method is introduced to improve the performance. Finally, the proposed method is evaluated using simulations. The results show that the novel method is with promising performance in terms of actuation delay compensation.

2.
Micromachines (Basel) ; 12(11)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34832815

RESUMO

In the process of biological microfluidic manipulation, the bubbles generated in the tube will seriously reduce the gauging accuracy. This paper introduces an improving method that can estimate the size of microbubbles in real time. Hence, the measurement data of the liquid volume can be modified according to this method. A microbubble detector based on the pulsed-ultrasound method was studied, including the device structure and the working principle. The assessment formula of the microbubbles in the tube was derived from the simulation results, which adopted the two-phase theory. The digital image processing method was applied to fulfill the microbubble calibration. This detection method was applied to measure the microbubbles in the tube and to modify the flow volume in a timely manner. The results of the experiments showed that this method is effective at improving the microflow gauging accuracy.

3.
Aging Dis ; 9(1): 133-142, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29392088

RESUMO

Presbycusis (age-related hearing loss) is the most universal sensory degenerative disease in elderly people caused by the degeneration of cochlear cells. Non-coding microRNAs (miRNAs) play a fundamental role in gene regulation in almost every multicellular organism, and control the aging processes. It has been identified that various miRNAs are up- or down-regulated during mammalian aging processes in tissue-specific manners. Most miRNAs bind to specific sites on their target messenger-RNAs (mRNAs) and decrease their expression. Germline mutation may lead to dysregulation of potential miRNAs expression, causing progressive hair cell degeneration and age-related hearing loss. Therapeutic innovations could emerge from a better understanding of diverse function of miRNAs in presbycusis. This review summarizes the relationship between miRNAs and presbycusis, and presents novel miRNAs-targeted strategies against presbycusis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...