Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diabetologia ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967669

RESUMO

AIMS/HYPOTHESIS: tRNAs play a central role in protein synthesis. Besides this canonical function, they were recently found to generate non-coding RNA fragments (tRFs) regulating different cellular activities. The aim of this study was to assess the involvement of tRFs in the crosstalk between immune cells and beta cells and to investigate their contribution to the development of type 1 diabetes. METHODS: Global profiling of the tRFs present in pancreatic islets of 4- and 8-week-old NOD mice and in extracellular vesicles released by activated CD4+ T lymphocytes was performed by small RNA-seq. Changes in the level of specific fragments were confirmed by quantitative PCR. The transfer of tRFs from immune cells to beta cells occurring during insulitis was assessed using an RNA-tagging approach. The functional role of tRFs increasing in beta cells during the initial phases of type 1 diabetes was determined by overexpressing them in dissociated islet cells and by determining the impact on gene expression and beta cell apoptosis. RESULTS: We found that the tRF pool was altered in the islets of NOD mice during the initial phases of type 1 diabetes. Part of these changes were triggered by prolonged exposure of beta cells to proinflammatory cytokines (IL-1ß, TNF-α and IFN-γ) while others resulted from the delivery of tRFs produced by CD4+ T lymphocytes infiltrating the islets. Indeed, we identified several tRFs that were enriched in extracellular vesicles from CD4+/CD25- T cells and were transferred to beta cells upon adoptive transfer of these immune cells in NOD.SCID mice. The tRFs delivered to beta cells during the autoimmune reaction triggered gene expression changes that affected the immune regulatory capacity of insulin-secreting cells and rendered the cells more prone to apoptosis. CONCLUSIONS/INTERPRETATION: Our data point to tRFs as novel players in the crosstalk between the immune system and insulin-secreting cells and suggest a potential involvement of this novel class of non-coding RNAs in type 1 diabetes pathogenesis. DATA AVAILABILITY: Sequences are available from the Gene Expression Omnibus (GEO) with accession numbers GSE242568 and GSE256343.

2.
Mol Metab ; 84: 101955, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704026

RESUMO

OBJECTIVE: The contribution of the mitochondrial electron transfer system to insulin secretion involves more than just energy provision. We identified a small RNA fragment (mt-tRF-LeuTAA) derived from the cleavage of a mitochondrially-encoded tRNA that is conserved between mice and humans. The role of mitochondrially-encoded tRNA-derived fragments remains unknown. This study aimed to characterize the impact of mt-tRF-LeuTAA, on mitochondrial metabolism and pancreatic islet functions. METHODS: We used antisense oligonucleotides to reduce mt-tRF-LeuTAA levels in primary rat and human islet cells, as well as in insulin-secreting cell lines. We performed a joint transcriptome and proteome analysis upon mt-tRF-LeuTAA inhibition. Additionally, we employed pull-down assays followed by mass spectrometry to identify direct interactors of the fragment. Finally, we characterized the impact of mt-tRF-LeuTAA silencing on the coupling between mitochondrial metabolism and insulin secretion using high-resolution respirometry and insulin secretion assays. RESULTS: Our study unveils a modulation of mt-tRF-LeuTAA levels in pancreatic islets in different Type 2 diabetes models and in response to changes in nutritional status. The level of the fragment is finely tuned by the mechanistic target of rapamycin complex 1. Located within mitochondria, mt-tRF-LeuTAA interacts with core subunits and assembly factors of respiratory complexes of the electron transfer system. Silencing of mt-tRF-LeuTAA in islet cells limits the inner mitochondrial membrane potential and impairs mitochondrial oxidative phosphorylation, predominantly by affecting the Succinate (via Complex II)-linked electron transfer pathway. Lowering mt-tRF-LeuTAA impairs insulin secretion of rat and human pancreatic ß-cells. CONCLUSIONS: Our findings indicate that mt-tRF-LeuTAA interacts with electron transfer system complexes and is a pivotal regulator of mitochondrial oxidative phosphorylation and its coupling to insulin secretion.


Assuntos
Secreção de Insulina , Células Secretoras de Insulina , Mitocôndrias , Animais , Ratos , Humanos , Mitocôndrias/metabolismo , Células Secretoras de Insulina/metabolismo , RNA de Transferência/metabolismo , RNA de Transferência/genética , Masculino , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , RNA Mitocondrial/metabolismo , RNA Mitocondrial/genética , Camundongos , Ratos Wistar , Transporte de Elétrons
3.
Chem Commun (Camb) ; 60(37): 4934-4937, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38629221

RESUMO

The electrochemical reduction of CO2 on catalyst surfaces is hindered by the inefficient mass transfer of CO2 in aqueous solutions. In this study, we employed an electrochemical reduction approach to fabricate a hydrophobic three-dimensional nanoporous silver catalyst with a plastron effect, aiming to enhance the CO2 diffusion. The resulting catalyst exhibited an exceptional performance with the FECO peaking at 95% at -0.65 V (vs. RHE) and demonstrated remarkable stability during continuous electrolysis for 48 hours. Control experiments, together with Tafel analysis, EIS measurements, and contact angle results, confirmed that the notable enhancement of performance was attributed to the hydrophobic porous structure that facilitated efficient storage and rapid mass transfer of low-solubility CO2 gas reactants.

4.
Nat Commun ; 14(1): 8106, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062076

RESUMO

Small noncoding RNAs (sRNAs) are crucial regulators of gene expression in bacteria. Acting in concert with major RNA chaperones such as Hfq or ProQ, sRNAs base-pair with multiple target mRNAs and form large RNA-RNA interaction networks. To systematically investigate the RNA-RNA interactome in living cells, we have developed a streamlined in vivo approach iRIL-seq (intracellular RIL-seq). This generic approach is highly robust, illustrating the dynamic sRNA interactomes in Salmonella enterica across multiple stages of growth. We have identified the OmpD porin mRNA as a central regulatory hub that is targeted by a dozen sRNAs, including FadZ cleaved from the conserved 3'UTR of fadBA mRNA. Both ompD and FadZ are activated by CRP, constituting a type I incoherent feed-forward loop in the fatty acid metabolism pathway. Altogether, we have established an approach to profile RNA-RNA interactomes in live cells, highlighting the complexity of RNA regulatory hubs and RNA networks.


Assuntos
Pequeno RNA não Traduzido , Salmonella enterica , Regiões 3' não Traduzidas/genética , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Salmonella enterica/genética , Salmonella enterica/metabolismo , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/metabolismo
5.
Int J Biol Macromol ; 243: 125219, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37285885

RESUMO

The structure and properties of lignin can vary depending on the type of lignocellulosic biomass it comes from and the separation techniques used, and also affects its suitability for different applications. In this work, the structure and properties of lignin isolated from moso bamboo, wheat straw, and poplar wood by different treatment processes were compared. Results show that deep eutectic solvent (DES) extracted lignin exhibits well-preserved structures (including ß-O-4, ß-ß, and ß-5 linkages), a low molecular weight (Mn = 2300-3200 g/mol), and relatively homogeneous lignin fragments (1.93 < PDI < 2.33) compared to dealkaline lignin (DL) and milled wood lignin (MWL). Besides, lignin samples extracted by DES have a regular nanostructure, higher carbon residue content (>40 %), and excellent antioxidant properties (the free radical scavenging index >20). Among the three types of biomass, the structural destruction of lignin in straw is the most obvious, which is due to the degradation of ß-O-4 and ß-ß linkages during DES treatment. These findings can contribute to a better understanding of the structural changes that occur in various treatment processes from different lignocellulosic biomass, and help maximize the targeted development of their applications based on the characteristics of lignin.


Assuntos
Antioxidantes , Lignina , Lignina/química , Biomassa , Peso Molecular
6.
Waste Manag ; 166: 35-45, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37148780

RESUMO

Bamboo pulp and papermaking produce a lot of bamboo powder waste, and its resource utilization is of great significance for biomass refining and environmental protection. Here, we propose an integrated approach involving mechanical activation, hydrothermal extraction, and deep eutectic solvents (DESs) multiple delignification for the efficient separation of bamboo powder. Among seven carboxylic acids based DESs, choline chloride (ChCl)-lactic acid (La) DES (1:1) is the most effective, with over 78.0% lignin removal and 88.9% cellulose retained after mechanical-hydrothermal (180 °C, 5 h)-DES (110 °C, 12 h) treatment. Notably, 84.7% of delignification is achieved after three times of ChCl-La DES treatment at 70, 90, and 110 °C respectively. The delignification rate is negatively correlated with the amount of carboxyl group in the DESs. The lower the pKa value, the higher the delignification rate. Additionally, the selectivity for lignin is improved with decreasing solvent polarity. DES treatment effectively degrades the guaiacyl unit lignin fractions and disrupts several ß-aryl-ether bonds (e.g., ß-O-4, ß-ß, and ß-5). Furthermore, DESs exhibit good recyclability, with less than 10% reduction in delignification after three cycles. Theory calculations confirm that ChCl-carboxylic acid DESs could compete with lignin to break hydrogen bonds in lignocellulosic biomass by providing their chloride, hydroxyl, and carboxyl groups. Overall, this study demonstrates the practical significance of multistage treatment for the effective fractionation of biomass into its three components.


Assuntos
Celulose , Lignina , Lignina/química , Pós , Biomassa , Solventes/química , Ácido Láctico , Colina/química , Hidrólise
7.
Cell Rep ; 40(2): 111069, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35830789

RESUMO

tRNA-derived fragments (tRFs) are an emerging class of small non-coding RNAs with distinct cellular functions. Here, we studied the contribution of tRFs to the regulation of postnatal ß cell maturation, a critical process that may lead to diabetes susceptibility in adulthood. We identified three tRFs abundant in neonatal rat islets originating from 5' halves (tiRNA-5s) of histidine and glutamate tRNAs. Their inhibition in these islets reduced ß cell proliferation and insulin secretion. Mitochondrial respiration was also perturbed, fitting with the mitochondrial enrichment of nuclear-encoded tiRNA-5HisGTG and tiRNA-5GluCTC. Notably, tiRNA-5 inhibition reduced Mpc1, a mitochondrial pyruvate carrier whose knock down largely phenocopied tiRNA-5 inhibition. tiRNA-5HisGTG interactome revealed binding to Musashi-1, which was essential for the mitochondrial enrichment of tiRNA-5HisGTG. Finally, tiRNA-5s were dysregulated in the islets of diabetic and diabetes-prone animals. Altogether, tiRNA-5s represent a class of regulators of ß cell maturation, and their deregulation in neonatal islets may lead to diabetes susceptibility in adulthood.


Assuntos
Células Secretoras de Insulina , RNA de Transferência , Animais , Proliferação de Células , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , RNA/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Ratos
8.
Biology (Basel) ; 11(3)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35336851

RESUMO

MicroRNAs (miRNAs) are endogenous ~23 nt RNAs which regulate message RNA (mRNA) targets mainly through perfect pairing with their seed region (positions 2-7). Several instances of UTR sequence with an additional nucleotide that might form a bulge within the pairing region, can also be recognized by miRNA as their target (bugle-target). But the prevalence of such imperfect base pairings in human and their roles in the evolution are incompletely understood. We found that human miRNAs with the CG dinucleotides (CG dimer) in their seed region have a significant low mutation rate than their putative binding sites in mRNA targets. Interspecific comparation shows that these miRNAs had very few conservative targets with the perfect seed-pairing, while potentially having a subclass of bulge-targets. Compared with the canonical target (perfect seed-pairing), these bulge-targets had a lower negative correlation with the miRNA expression, and either were down-regulated in the miRNA overexpression experiment or up-regulated in the miRNA knock-down experiment. Our results show that the bulge-targets are widespread in the miRNAs with CG dinucleotide within their seed regions, which could in part explain the rare conserved targets of these miRNAs based on seed rule. Incorporating these bulge-targets, together with conservation information, could more accurately predict the entire targets of these miRNAs.

9.
Environ Sci Pollut Res Int ; 28(27): 35537-35563, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34031822

RESUMO

Deep eutectic solvent (DES) is regarded as a new generation of green solvent due to its distinctive and tailorable physicochemical properties, such as low volatility, strong solubility, biodegradability, low-cost, environment-friendly, and feasibility of the structural design. As an alternative to traditional organic solvents and ionic liquids (ILs), DESs have been widely applied in many fields, such as organic chemical synthesis, electrochemical deposition, material preparation, biomass catalytic conversion, extraction and separation, detection and analysis, nanotechnology, gas absorption, and drug delivery. In this paper, through in-depth discussion on factors influencing the physicochemical properties of DESs, we summarized the relations between their composition, structure, and performance. Focusing on their solvent performance, we analyzed the latest research results of DESs with different physicochemical properties in various fields. It should be pointed out that designing and synthesizing DESs from the molecular structure aspect to regulate their physicochemical properties is the direction of accurately developing new functional applications of DESs.


Assuntos
Líquidos Iônicos , Fenômenos Químicos , Estrutura Molecular , Solubilidade , Solventes
10.
Compr Physiol ; 10(3): 893-932, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32941685

RESUMO

The discovery that most mammalian genome sequences are transcribed to ribonucleic acids (RNA) has revolutionized our understanding of the mechanisms governing key cellular processes and of the causes of human diseases, including diabetes mellitus. Pancreatic islet cells were found to contain thousands of noncoding RNAs (ncRNAs), including micro-RNAs (miRNAs), PIWI-associated RNAs, small nucleolar RNAs, tRNA-derived fragments, long non-coding RNAs, and circular RNAs. While the involvement of miRNAs in islet function and in the etiology of diabetes is now well documented, there is emerging evidence indicating that other classes of ncRNAs are also participating in different aspects of islet physiology. The aim of this article will be to provide a comprehensive and updated view of the studies carried out in human samples and rodent models over the past 15 years on the role of ncRNAs in the control of α- and ß-cell development and function and to highlight the recent discoveries in the field. We not only describe the role of ncRNAs in the control of insulin and glucagon secretion but also address the contribution of these regulatory molecules in the proliferation and survival of islet cells under physiological and pathological conditions. It is now well established that most cells release part of their ncRNAs inside small extracellular vesicles, allowing the delivery of genetic material to neighboring or distantly located target cells. The role of these secreted RNAs in cell-to-cell communication between ß-cells and other metabolic tissues as well as their potential use as diabetes biomarkers will be discussed. © 2020 American Physiological Society. Compr Physiol 10:893-932, 2020.


Assuntos
Diabetes Mellitus/genética , Células Secretoras de Insulina/fisiologia , RNA não Traduzido/genética , Animais , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Regulação da Expressão Gênica , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia
11.
Chem Commun (Camb) ; 56(51): 7021-7024, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32451518

RESUMO

The low-coordinated sites of electrocatalysts favour hydrogen evolution, while the edge sites are active for CO2 reduction. Oleylamine is used to stabilize nanoparticles by adsorbing on the low-coordinated sites. The hydrogen evolution reaction was dramatically suppressed and the FECO remained >93% from -0.4 to -0.8 V (vs. RHE) when oleylamine ligands existed on the surface of a gold catalyst. More H+ and electrons were involved in the CO evolution reaction, which changed the rate-limiting step from single-electron transfer to the chemical reaction step. The results establish that the surface-adsorbed surfactants during catalyst synthesis have an important effect on CO2 electrocatalytic reduction.

12.
Environ Sci Technol ; 54(12): 7570-7578, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32453946

RESUMO

1,8-Diazabicyclo[5.4.0]-undec-7-ene (DBU)-glycerol solution is employed as a promising CO2 absorbent. The regeneration of the CO2-loaded solution is of vital importance for its commercialization. It was investigated and compared with 30 wt % monoethanolamine (MEA). Variables affecting the absorption and desorption processes were studied, including the solvent composition, reaction temperature, and agitation. It shows that the absorption capacity for DBU-glycerol is comparable with 30 wt % MEA, and the desorption ratio for CO2-loaded DBU-glycerol mixture can reach as high as 95% in 60 min, 363 K at the 3:1 molar ratio of DBU to glycerol, while it is only 68% even after 165 min for CO2-saturated 30 wt % MEA. DBU-glycerol solution has higher cycling CO2 loading than 30 wt % MEA. Its cyclic capacity could keep above 90% after 10 cycles of absorption-desorption experiments. The desorption reaction is irreversible at the initial stage, and the reaction rate is expected as a first-order reaction from 349 to 377 K, and the apparent activation energy is 68.94 kJ/mol. Moreover, the heat duty of the reboiler during regeneration is estimated to be reduced by about 27% when compared with 30 wt % MEA.


Assuntos
Dióxido de Carbono , Glicerol , Etanolamina , Solventes , Temperatura
13.
Genomics ; 112(1): 332-345, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30779940

RESUMO

Guard hair and cashmere undercoat are developed from primary and secondary hair follicle, respectively. Little is known about the gene expression differences between primary and secondary hair follicle cycling. In this study, we obtained RNA-seq data from cashmere and milk goats grown at four different seasons. We studied the differentially expressed genes (DEGs) during the yearly hair follicle cycling, and between cashmere and milk goats. WNT, NOTCH, MAPK, BMP, TGFß and Hedgehog signaling pathways were involved in hair follicle cycling in both cashmere and milk goat. However, Milk goat DEGs between different months were significantly more than cashmere goat DEGs, with the largest difference being identified in December. Some expression dynamics were confirmed by quantitative PCR and western blot, and immunohistochemistry. This study offers new information sources related to hair follicle cycling in milk and cashmere goats, which could be applicable to improve the wool production and quality.


Assuntos
Cabras/genética , Folículo Piloso/metabolismo , Transcriptoma , Animais , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Genômica , Cabras/metabolismo , Folículo Piloso/crescimento & desenvolvimento , RNA-Seq , Estações do Ano , Proteínas da Superfamília de TGF-beta/genética , Proteínas da Superfamília de TGF-beta/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
14.
RNA Biol ; 16(9): 1179-1189, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31149892

RESUMO

N6-methyladenosine (m6A) is considered as a reversible RNA modification occurring more frequently on the GAC than AAC context in vivo, which regulates post-transcriptional gene expression in mammalian cells. m6A 'writers' METTL3 and METTL14 demonstrate a strong preference for binding AC-containing motifs in living cells. However, this evidence is currently lacking for m6A erasers, leaving the dynamics of the internal m6A modification under debate recently. We analysed three recently published FTO CLIP-seq data sets and two generated in this study, one of the two known m6A 'erasers'. FTO binding peaks from all cell lines contain RRACH motifs. Only those from K562, 3T3-L1and HeLa cells were enriched in AC-containing motifs, while those from HEK293 were not. The exogenously overexpressed FTO effectively binds to m6A motif-containing RNA sites. FTO overexpression specifically removed m6A modification from GGACU and RRACU motifs in a concentration-dependent manner. These findings underline the dynamics of FTO in target selection, which is predicted to contribute to both the m6A dynamics and the FTO plasticity in biological functions and diseases.


Assuntos
Adenosina/análogos & derivados , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Desmetilação , Motivos de Nucleotídeos/genética , Células 3T3-L1 , Adenosina/metabolismo , Animais , Sequência de Bases , Humanos , Camundongos , Poliadenilação , Ligação Proteica , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma/genética
15.
Oncogenesis ; 7(10): 79, 2018 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-30293994

RESUMO

Oral squamous cell carcinoma (OSCC) represents over 90% of oral cancer incidence, while its mechanisms of tumorigenesis remain poorly characterized. In this study, we applied RNA-seq and microRNA-seq methodologies in four pairs of cancer and adjacent normal tissues to profile the contribution of miRNAs to tumorigenesis-altered functional pathways by constructing a comprehensive miRNA-mediated mRNA regulatory network. There were 213 differentially expressed (DE) miRNAs and 2172 DE mRNAs with the involvement of negative miRNA-mRNA interactions identified by at least two pairs of cancerous tissues. GO analysis revealed that the upregulated microRNAs significantly contributed to a global down-regulation of a number of transcription factors (TFs) in OSCC. Among the negative regulatory networks between the selected miRNAs (133) and TFs (167), circadian rhythm genes (RORA, RORB, RORC, and CLOCK) simultaneously regulated by multiple microRNAs were of particular interest. For instance, RORA transcript was predicted to be targeted by 25 co-upregulated miRNAs, of which, miR-503-5p, miR-450b-5p, miR-27a-3p, miR-181a-5p and miR-183-5p were further validated to directly target RORA, resulting in a stronger effect on RORA suppression together. In addition, we showed that the mRNA and protein expression levels of RORα were significantly decreased in most OSCC samples, associated with advanced clinical stage and poor prognosis. RORα significantly suppressed the proliferation of OSCC cells in vitro and in vivo. Attenuated RORα decreased p53 protein expression and suppressed p53 phosphorylation activity. Altogether, our results strongly suggest the importance of the role of miRNAs in regulating the activity of circadian rhythm-related TFs network during OSCC tumorigenesis, and provide further clues to understand the clinical link between circadian rhythm and cancer therapy.

16.
Bioresour Technol ; 261: 28-35, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29653331

RESUMO

The aim of this work was to study promotion of ball milling and CO2 assistance on cellulose hydrolysis kinetics in water medium. Kinetic behaviors were analyzed based on first-order and shrinking core models. The results showed that cellulose hydrolysis is enhanced by ball milling and CO2 assistance. Ball milling reduced crystallinity and particle size of cellulose, resulting in high cellulose conversion, while hydrolysis promoted by CO2 assistance was weaker. Double-layer hydrolysis was observed for ball-milled cellulose, and rate constant in active layer is higher. Based on double-layer shrinking core model (DL-SCM), activation energy of cellulose conversion decreased from 73.6 to 39.8 kJ/mol when ball milling and CO2 assistance were applied. Hydrolysis active layer was about 0.9 µm, representing activated thickness of ball-milled cellulose. Hydrolysis promotion by crystallinity and particle size reduction was distinguished via DL-SCM, and crystal evolution possesses greater improvement than particle size decrease on hydrolysis of ball-milled cellulose.


Assuntos
Dióxido de Carbono , Celulose/química , Hidrólise , Tamanho da Partícula , Água
17.
Chem Asian J ; 13(9): 1180-1186, 2018 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-29498220

RESUMO

Aqueous-phase ketonization of bio-based acetic acid is important to improve the conversion efficiency of biomass resources. In this study, ZrMn mixed oxides (ZrMnOx ) with high aqueous-phase ketonization activity are synthetized through a carbonization/oxidation method (COM) and solvothermal method (STM). The results show that ZrMnOx prepared by COM possesses tetragonal ZrO2 , and hausmannite Mn3 O4 is observed only at a high oxidation temperature of 750 °C. Low-temperature and long oxidation results in decreased crystallinity and crystallite size, which is related to highly dispersed Mnn+ species. The catalysts with improved acid sites possess high ketonization activity. Surface areas and pore size of ZrMnOx synthetized by STM are controlled by the solvents for thermal treatment. Compared with water as solvent, ethanol increases the surface area and pore size, resulting in high ketonization activity.

18.
J Biomater Sci Polym Ed ; 29(11): 1319-1330, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29578386

RESUMO

To improve the efficacy and reduce the systemic toxicity of the diabetes mellitus, herewith, we developed a novel microparticles-embedded microcapsules (MEMs) system, synthesized from calcium alginate/chitosan (Ca-Alg/CS), by emulsion gelation using a high voltage electrostatic droplet generator. In our study, we selected two antidiabetic drugs insulin (INS) and metformin (MET) as model drugs to investigate different spatial distribution appropriate of MEMs system. Characterization based on particle size and morphology, encapsulation efficiency and drug loading, as well as drug delivery properties were carried out on the MEMs system. Typical multi-chamber structure was shown by SEM and the optical spectra. The average diameters of microparticles and Ca-Alg/CS MEMs were 2100 nm and 410 µm, respectively. Insulin and MET were embedded into MEMs via electrostatic reaction according to FT-IR spectra. Moreover, drug loading and encapsulation efficiency of INS were higher than that of MET in this system when drugs were loaded alone or together. More importantly, this system has potential for orderly drug release and well sustained release when MET in the inner and INS in the outer space could be applied as a combination therapy for diabetes. The obtained in vivo experimental data on diabetes rats has shown that the designed MEMs system resulted in a higher hypoglycemic effect within add-on therapy.


Assuntos
Alginatos/química , Cápsulas/química , Quitosana/química , Insulina/administração & dosagem , Metformina/administração & dosagem , Microesferas , Materiais Biocompatíveis/química , Diabetes Mellitus/tratamento farmacológico , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Quimioterapia Combinada/métodos , Géis/química , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/efeitos adversos , Insulina/efeitos adversos , Metformina/efeitos adversos , Tamanho da Partícula , Propriedades de Superfície
19.
ChemSusChem ; 9(12): 1355-85, 2016 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-27158985

RESUMO

Different biobased chemicals are produced during the conversion of biomass into fuels through various feasible technologies (e.g., hydrolysis, hydrothermal liquefaction, and pyrolysis). The challenge of transforming these biobased chemicals with high hydrophilicity is ascribed to the high water content of the feedstock and the inevitable formation of water. Therefore, aqueous-phase processing is an interesting technology for the heterogeneous catalytic conversion of biobased chemicals. Different reactions, such as dehydration, isomerization, aldol condensation, ketonization, and hydrogenation, are applied for the conversion of sugars, furfural/hydroxymethylfurfural, acids, phenolics, and so on over heterogeneous catalysts. The activity, stability, and reusability of the heterogeneous catalysts in water are summarized, and deactivation processes and several strategies are introduced to improve the stability of heterogeneous catalysts in the aqueous phase.


Assuntos
Biocombustíveis , Água/química , Biocombustíveis/economia , Catálise , Meio Ambiente , Hidrogenação , Isomerismo
20.
Bioresour Technol ; 192: 522-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26086085

RESUMO

In the current work, the co-pyrolysis kinetics of Dunaliella tertiolecta and PP were investigated via TGA, while TG-FTIR and TG-MS were used for the analysis of gas-phase components and volatiles transition. The TGA results show that PP with certain small particle size accelerates the pyrolysis process of the microalgae, while the existence of D. tertiolecta delayed that of PP. This significant interaction achieves maximum when mass ratio of PP and D. tertiolecta is 6:4. The activation energy estimated from FWO kinetic model also supports this interaction. The TG-FTIR and TG-MS results show that a significant decrease of CO2 occurs at PP and D. tertiolecta mass ratio of 6:4, indicating that small molecules (such as radicals) released by PP might react with CO2 produced by D. tertiolecta or carbonyl groups in the microalgae.


Assuntos
Dióxido de Carbono/química , Fracionamento Celular/métodos , Calefação/métodos , Microalgas/química , Modelos Químicos , Polipropilenos/química , Simulação por Computador , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...