Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Mater Today Bio ; 26: 101090, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38800564

RESUMO

Hyperpigmentation (HP) is an unfavorable skin disease that typically caused by injury, inflammation, or photoaging and leads to numerous physical and psychological issues in patients. Recently, development and application of natural whitening substances, particularly compound curcumin (CUR), is one of the most prevalent treatments for HP. However, it is still a formidable challenge to improve the percutaneous delivery of CUR due to its inadequate solubility in water and excellent barrier function of skin. To overcome the limitations of conventional delivery and increase the percutaneous absorption of CUR, the efficient delivery of CUR is urgently required. Herein, we developed a new malic acid-sorbitol deep eutectic solvent (MS/DES) gel microneedle loaded with CUR as a transdermal delivery system for HP treatment. The MS/DES gel produces three-dimensional (3D) network structure by self-assembly of hydrogen bond interactions, which conferred the CUR-MS/DES-GMN with sufficient mechanical properties to successfully penetrate skin tissue while also helping to enhance the drug's release rate. The CUR-MS/DES-GMN exhibit high biocompatibility and mechanical property in vivo of mice. The zebrafish experiments also show that CUR-MS/DES gel has significant effect of anti-pigmentation. Therefore, the designed CUR-MS/DES-GMN system provides a novel strategy for HP treatment based on self-assembly of naturally molecules.

2.
Arch Osteoporos ; 19(1): 30, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647606

RESUMO

Type 2 diabetic osteoporosis (T2DOP) has received increasing attention from researchers. In this study, a total of 453 publications related to T2DOP from 2013 to 2022 were analyzed using bibliometric and visual analysis to identify the research trends and research hotspots in the field of T2DOP. PURPOSE: The objective of this study was to conduct a comprehensive bibliometric analysis of T2DOP-related publications from 2013 to 2022 to determine global research trends in T2DOP in terms of number of publications, countries/regions, institutions, authors, journals, funding agencies, and keywords. METHODS: All data were collected from the Web of Science Core Collection (WoSCC). All original research publications regarding T2DOP from 2013 to 2022 were retrieved. VOSviewer and Microsoft Office Excel were used to conduct the bibliometric and visual analysis. RESULTS: From 2013 to 2022, 515 relevant publications were published, with a peak in 2022 in the annual number of publications. The countries leading the research were USA and China. Sugimoto was the most influential authors. Capital Medical University and Nanjing Medical University were the most prolific institutions. Osteoporosis International was the most productive journal concerning T2DOP research. National Natural Science Foundation of China was the primary funding source for this research area. "Bone-mineral density", "fracture risk", and "postmenopausal women" were the most high-frequency keywords over the past 10 years. CONCLUSION: This was the first bibliometric study of diabetes mellitus and osteoporosis to exclusively examine type 2 diabetes mellitus. Our findings would provide guidance to understand the research frontiers and hot directions in the near future.


Assuntos
Bibliometria , Diabetes Mellitus Tipo 2 , Osteoporose , Humanos , Diabetes Mellitus Tipo 2/epidemiologia , Osteoporose/epidemiologia , Pesquisa Biomédica/estatística & dados numéricos
3.
Exp Gerontol ; 185: 112347, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38097054

RESUMO

Type 2 diabetes (T2D) is a common chronic disease, characterized by persistent hyperglycemia and insulin resistance. This disorder is associated with decreased bone quality and an elevated risk of bone fractures. However, evidence on the relationship between systemic metabolic change and the development of type 2 diabetic osteoporosis (T2DOP) remains elusive. Herein, we investigate the changes of bone metabolites with bone loss in db/db mice (an animal model of T2DOP exhibited bone loss with age progression), and explore the potential metabolic mechanism underlying type 2 diabetes and osteoporosis. C57BKS male mice were distributed in four groups, consisting six mice in each group: 8w m/m, 24w m/m, 8w db/db and 24w db/db. Bone morphometric and biomechanical parameters of db/db mice were analyzed by micro-CT and materials tester, it was found that 24w db/db mice showed severe bone loss and decreased bone tissue hardness compared with misty/misty littermates. The tibia of misty/misty mice (8 weeks, 24 weeks) and db/db mice (8 weeks, 24 weeks) were screened for differential metabolites by UPLC-Orbitrap MS. Ninety-eight metabolites were identified (35 and 63 metabolites are associated with early staged and late staged, respectively), consisting of amino acids, fatty acyls, and nucleotides. Notably, fatty acyls (such as 18-HEPE, 16(17)-EpDPE, arachidonic acid) and glycerophospholipids (such as phosphocholines (PC) (O-10:1(9E)/0:0), PC (O-16:1(9E)/0:0) [U] and phosphatidylethanolamines (PE) (P-16:0/0:0)) were significantly increased, and metabolites of amino acid pathway (such as l-glutamine, proline, phenylalanine) showed a downregulation trend. Dysregulation of lipid and glutathione pathways is the major contributor to progression of T2DOP in C57BKS mice.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Resistência à Insulina , Osteoporose , Masculino , Camundongos , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Metaboloma , Osteoporose/etiologia , Aminoácidos
4.
Biomolecules ; 13(11)2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-38002276

RESUMO

Although amphiphilic chitosan has been widely studied as a drug carrier for drug delivery, fewer studies have been conducted on the antimicrobial activity of amphiphilic chitosan. In this study, we successfully synthesized deoxycholic acid-modified chitosan (CS-DA) by grafting deoxycholic acid (DA) onto chitosan C2-NH2, followed by grafting succinic anhydride, to prepare a novel amphiphilic chitosan (CS-DA-SA). The substitution degree was 23.93% for deoxycholic acid and 29.25% for succinic anhydride. Both CS-DA and CS-DA-SA showed good blood compatibility. Notably, the synthesized CS-DA-SA can self-assemble to form nanomicelles at low concentrations in an aqueous environment. The results of CS, CS-DA, and CS-DA-SA against Escherichia coli and Staphylococcus aureus showed that CS-DA and CS-DA-SA exhibited stronger antimicrobial effects than CS. CS-DA-SA may exert its antimicrobial effect by disrupting cell membranes or forming a membrane on the cell surface. Overall, the novel CS-DA-SA biomaterials have a promising future in antibacterial therapy.


Assuntos
Quitosana , Quitosana/farmacologia , Anidridos Succínicos , Micelas , Antibacterianos/farmacologia , Ácido Desoxicólico/farmacologia
5.
Biosensors (Basel) ; 13(9)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37754070

RESUMO

Functional nucleic acid (FNA) probes have been widely used in environmental monitoring, food analysis, clinical diagnosis, and biological imaging because of their easy synthesis, functional modification, flexible design, and stable properties. However, most FNA probes are designed based on one-photon (OP) in the ultraviolet or visible regions, and the effectiveness of these OP-based FNA probes may be hindered by certain factors, such as their potential for photodamage and limited light tissue penetration. Two-photon (TP) is characterized by the nonlinear absorption of two relatively low-energy photons of near-infrared (NIR) light with the resulting emission of high-energy ultraviolet or visible light. TP-based FNA probes have excellent properties, including lower tissue self-absorption and autofluorescence, reduced photodamage and photobleaching, and higher spatial resolution, making them more advantageous than the conventional OP-based FNA probes in biomedical sensing. In this review, we summarize the recent advances of TP-excited and -activated FNA probes and detail their applications in biomolecular detection. In addition, we also share our views on the highlights and limitations of TP-based FNA probes. The ultimate goal is to provide design approaches for the development of high-performance TP-based FNA probes, thereby promoting their biological applications.


Assuntos
Diagnóstico por Imagem , Corantes Fluorescentes , Sondas de Ácido Nucleico , Fótons , Luz
6.
PeerJ Comput Sci ; 9: e1307, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346698

RESUMO

In response to the traditional Dempster-Shafer (D-S) combination rule that cannot handle highly conflicting evidence, an evidence combination method based on the stochastic approach for link-structure analysis (SALSA) algorithm combined with Lance-Williams distance is proposed. Firstly, the degree of conflict between evidences is calculated based on the number of correlation coefficients between evidences. Then, the evidences with a number of correlation coefficients greater than the average number of correlation coefficients of evidence are connected to construct an evidence association network. The authority weight of the evidence is calculated based on the number of citations in the concept of SALSA algorithm combined with the support of the evidence. Subsequently, the Lance-Williams distance between the evidences is calculated and transformed into support of the evidence. Next, the authority weight and support of evidence are combined to jointly construct a novel correction coefficient to correct the evidence. Finally, the corrected evidence is fused using the D-S combination rule to obtain the final fusion result. The numerical results verify that the method proposed in this paper can effectively solve the problem of the traditional D-S combination rule being unable to handle highly conflicting evidence.

7.
Molecules ; 28(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37298838

RESUMO

Improving the transdermal absorption of weakly soluble drugs for topical use can help to prevent and treat skin photoaging. Nanocrystals of 18ß-glycyrrhetinic acid (i.e., NGAs) prepared by high-pressure homogenization and amphiphilic chitosan (ACS) were used to form ANGA composites by electrostatic adsorption, and the optimal ratio of NGA to ACS was 10:1. Dynamic light scattering analysis and zeta potential analysis were used to evaluate the nanocomposites' suspension, and the results showed that mean particle size was 318.8 ± 5.4 nm and the zeta potential was 30.88 ± 1.4 mV after autoclaving (121 °C, 30 min). The results of CCK-8 showed that the half-maximal inhibitory concentration (IC50) of ANGAs (71.9 µg/mL) was higher than that of NGAs (51.6 µg/mL), indicating that the cytotoxicity of ANGAs was weaker than that of NGAs at 24 h. After the composite had been prepared as a hydrogel, the vertical diffusion (Franz) cells were used to investigate skin permeability in vitro, and it was shown that the cumulative permeability of the ANGA hydrogel increased from 56.5 ± 1.4% to 75.3 ± 1.8%. The efficacy of the ANGA hydrogel against skin photoaging was studied by constructing a photoaging animal model under ultraviolet (UV) irradiation and staining. The ANGA hydrogel improved the photoaging characteristics of UV-induced mouse skin significantly, improved structural changes (e.g., breakage and clumping of collagen and elastic fibers in the dermis) significantly, and improved skin elasticity, while it inhibited the abnormal expression of matrix metalloproteinase (MMP)-1 and MMP-3 significantly, thereby reducing the damage caused by UV irradiation to the collagen-fiber structure. These results indicated that the NGAs could enhance the local penetration of GA into the skin and significantly improve the photoaging of mouse skin. The ANGA hydrogel could be used to counteract skin photoaging.


Assuntos
Quitosana , Envelhecimento da Pele , Dermatopatias , Camundongos , Animais , Quitosana/farmacologia , Quitosana/metabolismo , Dermatopatias/metabolismo , Pele/metabolismo , Colágeno/metabolismo , Raios Ultravioleta
8.
Front Pharmacol ; 14: 1173110, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37168991

RESUMO

The tripeptide Leu-Pro-Lys (LPK), derived from the Sipunculus nudus protein, was synthesized and studied to investigate its potential protective effect on bone formation. The effect and mechanism of LPK were analyzed through network pharmacology, bioinformatics, and experimental pharmacology. The study found that LPK at concentrations of 25 µg/mL and 50 µg/mL significantly increased ALP activity and mineralization in C3H10 cells. LPK also increased the expression of COL1A1 and promoted bone formation in zebrafish larvae. Network pharmacology predicted 148 interaction targets between LPK and bone development, and analysis of the protein-protein interaction network identified 13 hub genes, including ESR1, MAPK8, and EGFR, involved in bone development. Through KEGG enrichment pathways analysis, it was determined that LPK promotes bone development by regulating endocrine resistance, the relaxin signaling pathway, and the estrogen signaling pathway. Molecular docking results showed direct interactions between LPK and ESR1, MAPK8, and MAPK14. Additional verification experiments using western blot assay revealed that LPK significantly upregulated the expression of genes related to bone formation, including COL1A1, OPG, RUNX2, ESR1, phosphorylated MAPK14, and phosphorylated MAPK8 in C3H10 cells. These results suggest that LPK promotes bone formation by activating the estrogen/MAPK signaling pathway.

9.
Molecules ; 28(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37110834

RESUMO

Increasing the yield and purity of B-phycoerythrin (B-PE) can improve the economic state of microalgae industrial processing. One method of cost reduction involves the recovery of remaining B-PE from wastewater. In this study, we developed a chitosan (CS)-based flocculation technique for the efficient recovery of B-PE from a low concentration of phycobilin in wastewater. We investigated the effects of the molecular weight of chitosan, B-PE/CS mass ratio, and solution pH on the flocculation efficiency of CS and the effects of phosphate buffer concentration and pH on the recovery rate of B-PE. The maximum flocculation efficiency of CS, recovery rate, and purity index of B-PE were 97.19% ± 0.59%, 72.07% ± 1.37%, and 3.20 ± 0.025 (drug grade), respectively. The structural stability and activity of B-PE were maintained during the recovery process. Economic evaluation revealed that our CS-based flocculation method is more economical than the ammonium sulfate precipitation method is. Furthermore, the bridging effect and electrostatic interaction play important roles in B-PE/CS complex flocculation process. Hence, our study provides an efficient and economical method to recover high-purity B-PE from a low concentration of phycobilin in wastewater, which promoted the application of B-PE as a natural pigment protein in food and chemical applications.

10.
ACS Synth Biol ; 12(4): 1320-1330, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-36995145

RESUMO

As the demand for sustainable energy has increased, photoautotrophic cyanobacteria have become a popular platform for developing tools in synthetic biology. Although genetic tools are generally available for several model cyanobacteria, such tools have not yet been developed for many other strains potentially suitable for industrial applications. Additionally, most inducible promoters in cyanobacteria are controlled by chemical compounds, but adding chemicals into growth media on an industrial scale is neither cost-effective nor environmentally friendly. Although using light-controlled promoters is an alternative approach, only a cyanobacterial expression system inducible by green light has so far been described and employed for such applications. In this study, we have established a conjugation-based technique to express a reporter gene (eyfp) in the nonmodel cyanobacterium, Chlorogloeopsis fritschii PCC 9212. We also identified a promoter specifically activated by far-red light from the Far-Red Light Photoacclimation gene cluster of Leptolyngbya sp. JSC-1. This promoter, PchlFJSC1, was successfully used to drive eyfp expression. PchlFJSC1 is tightly regulated by light quality (i.e., wavelength) and leads to an approximately 30-fold increase in EYFP production when cells were exposed to far-red light. The induction level was controlled by the far-red light intensity, and induction stopped when cells were returned to visible light. This system has the potential for further applications in cyanobacteria by providing an additional choice of light wavelength to control gene expression. Collectively, this study developed a functional gene-expression system for C. fritschii PCC 9212 that can be regulated by exposing cells to far-red light.


Assuntos
Cianobactérias , Cianobactérias/genética , Cianobactérias/metabolismo , Luz , Regiões Promotoras Genéticas/genética
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 293: 122487, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36812755

RESUMO

Alkaline phosphatase (ALP) is a metalloenzyme, the level of which is clinically significant as an abnormality of ALP activity results in several diseases. In the present study, we introduced a MnO2 nanosheet-based assay for ALP detection employing the adsorption and reduction characteristics of G-rich DNA probes and ascorbic acid (AA), respectively. Ascorbic acid 2-phosphate (AAP) was utilized to act as a substrate for ALP which hydrolyzes AAP generating AA. In the absence of ALP, MnO2 nanosheets adsorb the DNA probe destructing the G-quadruplex formation and showing no fluorescence emission. On the contrary, being present in the reaction mixture ALP hydrolyzes AAP yielding AA, then the AA reduce the MnO2 nanosheets into Mn2+, hence, the probe is free to react with a dye, thioflavin T (ThT), and synthesizes ThT/G-quadruplex to spark high fluorescence intensity. Therefore, under optimized conditions (250 nM DNA probe, 8 µM ThT, 96 µg/mL MnO2 nanosheets, and 1 mM AAP) the sensitive and selective measurement of ALP activity can be achieved through the change of fluorescence intensity, with a linear range and a limit of detection of 0.1-5 U/L and 0.045 U/L. Our assay exhibited its potential to assess the ALP inhibitor when in an inhibition assay Na3VO4 inhibited ALP with an IC50 value of 0.137 mM and also was validated in clinical samples.


Assuntos
Fosfatase Alcalina , Óxidos , Compostos de Manganês , Corantes , Sondas de DNA , Limite de Detecção , Espectrometria de Fluorescência
12.
Mol Neurobiol ; 60(3): 1547-1562, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36525154

RESUMO

GRK5 is a member of the G protein-coupled receptor (GPCR) kinase family and is closely associated with heart and nervous system disease. It has been reported that GRK5 is closely related to cerebral nerve function and neurodegenerative diseases. However, the biological function of GRK5 in the brain and the influence of GRK5 deficiency on cognitive dysfunction associated with neurodegenerative diseases are unknown. Here, we reported that mice with reduced GRK5 in the hippocampus exhibit cognitive impairment and some Alzheimer's disease (AD)-related molecular pathologies, such as significant neuronal damage and loss, enhanced tau protein phosphorylation, and increased levels of Aß peptides in the hippocampus. Mechanistically, we observed that GRK5 is located in microglia and plays an essential role in maintaining the morphology and function of microglia. GRK5 deficiency elicits microglial morphology changes and proinflammatory-associated gene increases. In addition, transcriptional analysis of hippocampal tissues revealed striking changes in neuroactive ligand‒receptor interactions and TNF signaling in GRK5-deficient mice. In conclusion, our results further confirm the vital role of GRK5 in maintaining normal cognitive function in mice. This finding suggests a possible mechanism by which GRK5 maintains microglial homeostasis, and its loss may induce microglial function deficits and cause some AD-related molecular pathogenesis.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Camundongos , Animais , Microglia/metabolismo , Camundongos Knockout , Doença de Alzheimer/patologia , Hipocampo/metabolismo , Disfunção Cognitiva/metabolismo , Camundongos Transgênicos , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças
13.
BMC Neurosci ; 23(1): 74, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36482320

RESUMO

BACKGROUND: Sodium formononetin-3'-sulphonate (Sul-F) may alleviate I/R injury in vivo with uncertain mechanism. Endoplasmic reticulum (ER) stress-mediated apoptosis participates in the process of cerebral ischemia-reperfusion (I/R) injury. Our aim is to figure out the effect of Sul-F on cerebral I/R injury and to verify whether it works through suppressing ER stress-mediated apoptosis. RESULTS: The cerebral lesions of middle cerebral artery occlusion (MCAO) model in SD rats were aggravated after 24 h of reperfusion, including impaired neurological function, increased infarct volume, intensified inflammatory response and poor cell morphology. After intervention, the edaravone (EDA, 3 mg/kg) group and Sul-F high-dose (Sul-F-H, 80 mg/kg) group significantly alleviated I/R injury via decreasing neurological score, infarct volume and the serum levels of inflammatory factors (TNF-α, IL-1ß and IL-6), as well as alleviating pathological injury. Furthermore, the ER stress level and apoptosis rate were elevated in the ischemic penumbra of MCAO group, and were significantly blocked by EDA and Sul-F-H. In addition, EDA and Sul-F-H significantly down-regulated the ER stress related PERK/eIF2α/ATF4 and IRE1 signal pathways, which led to reduced cell apoptosis rate compared with the MCAO group. Furthermore, there was no difference between the EDA and Sul-F-H group in terms of therapeutic effect on cerebral I/R injury, indicating a therapeutic potential of Sul-F for ischemic stroke. CONCLUSIONS: Sul-F-H can significantly protects against cerebral I/R injury through inhibiting ER stress-mediated apoptosis in the ischemic penumbra, which might be a novel therapeutic target for ischemic stroke.


Assuntos
AVC Isquêmico , Traumatismo por Reperfusão , Ratos , Animais , Ratos Sprague-Dawley , Sódio , Estresse do Retículo Endoplasmático , Traumatismo por Reperfusão/tratamento farmacológico , Apoptose
14.
Biomolecules ; 12(11)2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36358951

RESUMO

Creation of bio-multifunctional wound dressings with potent hemostatic, antibacterial, anti-inflammatory, and angiogenesis features for bolstering the healing of full-thickness wounds is sought after for clinical applications. We created bio-multifunctional composite sponges by coupling alginate and chitosan with Sargassum pallidum polysaccharides through electrostatic interactions, calcium ion (Ca2+) crosslinking, and lyophilization. Alginate/chitosan (AC) sponges with different concentrations of Sargassum pallidum polysaccharides were obtained and termed AC, ACS-1%, ACS-2.5%, and ACS-5%. ACS-1% and ACS-2.5% sponges exhibited uniform porosity, high water vapor transmission rate, high water absorption, as well as good hemostatic and antibacterial abilities. ACS-2.5% sponges facilitated wound closure and promoted angiogenesis and re-epithelialization in the dermis. These data suggest that ACS sponges containing a certain amount of Sargassum pallidum polysaccharides could be employed for treatment of full-thickness skin wounds.


Assuntos
Quitosana , Hemostáticos , Sargassum , Quitosana/farmacologia , Alginatos/farmacologia , Polissacarídeos/farmacologia , Antibacterianos/farmacologia
15.
Mar Drugs ; 20(8)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36005539

RESUMO

Chitosan, which is derived from chitin, is the only known natural alkaline cationic polymer. Chitosan is a biological material that can significantly improve the living standard of the country. It has excellent properties such as good biodegradability, biocompatibility, and cell affinity, and has excellent biological activities such as antibacterial, antioxidant, and hemostasis. In recent years, the demand has increased significantly in many fields and has huge application potential. Due to the poor water solubility of chitosan, its wide application is limited. However, chemical modification of the chitosan matrix structure can improve its solubility and biological activity, thereby expanding its application range. The review covers the period from 1996 to 2022 and was elaborated by searching Google Scholar, PubMed, Elsevier, ACS publications, MDPI, Web of Science, Springer, and other databases. The various chemical modification methods of chitosan and its main activities and application research progress were reviewed. In general, the modification of chitosan and the application of its derivatives have had great progress, such as various reactions, optimization of conditions, new synthetic routes, and synthesis of various novel multifunctional chitosan derivatives. The chemical properties of modified chitosan are usually better than those of unmodified chitosan, so chitosan derivatives have been widely used and have more promising prospects. This paper aims to explore the latest progress in chitosan chemical modification technologies and analyze the application of chitosan and its derivatives in various fields, including pharmaceuticals and textiles, thus providing a basis for further development and utilization of chitosan.


Assuntos
Quitosana , Antibacterianos/química , Antibacterianos/farmacologia , Quitina/química , Quitosana/química , Solubilidade
16.
Anal Chem ; 94(31): 10942-10948, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35854635

RESUMO

We report a Trojan horse strategy to efficiently deliver the spherical nucleic acid probes (namely, nanoflares) into the cytoplasm for microRNA (miRNA) imaging with high fidelity, breaking through the cytoplasmic transport dilemma of RNA probes in living cells. The nanoflare is encapsulated into a "Trojan horse" consisting of zwitterionic choline phosphates (CPs) and acid-degradable crosslinkers; the former effectively promotes cell uptake and the latter triggers instantaneous liberation of the nanoflare probes from the lysosome to the cytoplasm. The exposed nanoflares in the cytoplasm can be lightened up by the target miRNAs specifically. Compared with the conventional nanoflares as well as the improved ones in previous reports, the "Trojan horse" nanoflares avoid nuclease degradation and thiol displacement during the delivery process, providing unprecedentedly high accuracy for intracellular miRNA imaging.


Assuntos
MicroRNAs , Ácidos Nucleicos , Citoplasma , Diagnóstico por Imagem , MicroRNAs/genética
17.
Exp Gerontol ; 166: 111897, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35850279

RESUMO

Ultraviolet radiation (UVB) can result in photodamage to the skin and can seriously threaten health, particularly in the elderly. Oxidative stress and the inflammatory response have been shown to play a significant role in the process. In a previous study, we isolated, purified and identified a polysaccharide from the extract of Dendrobium huoshanense (DHPW1). In this study we evaluated the effect of DHPW1 on ameliorating the UVB photodamage of human immortalized keratinocytes (HaCaT). Cell proliferation and cell scratch assays were used to evaluate the viability of the HaCaT treated with DHPW1, and a fluorescent probe and Western blot analysis were used to examine the production of reactive oxygen species (ROS) and the expression of proinflammatory factors IL-1ß, IL-6, and NF-κB(p65). The results show that, compared with the control group (UVB irradiation only), DHPW1 significantly improved the viability of UVB-irradiated HaCaT and enhanced the migration rate of the cell scratch after 24 h. The scratch-healing rate reached 90 % after 36 h. DHPW1 also significantly inhibited UVB-induced oxidative stress and expression of proinflammatory factors . Compared with the control group, the production of ROS decreased by 49.11 %, and the relative protein expression of IL-6 and NF-κB(p65) decreased by up to 13.30 % and 31.02 %, respectively. It is concluded that DHPW1 can significantly improve viability and wound closure rate of UVB-irradiated HaCaT. In addition, it can reduce the expression of IL-1 and IL-6 by inhibiting the transcription of NF-κB(p65), thereby reducing inflammation and oxidative stress in UVB-irradiated HaCaT.


Assuntos
NF-kappa B , Raios Ultravioleta , Idoso , Linhagem Celular , Humanos , Interleucina-6/metabolismo , Queratinócitos , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Raios Ultravioleta/efeitos adversos
18.
BMC Complement Med Ther ; 22(1): 174, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35752787

RESUMO

BACKGROUND: Polysaccharides from wampee have been reported to process various biological activities, while the relationship between structure and bioactivities has been barely addressed. Pectin, an abundant water-soluble polysaccharide in wampee, showed significant antioxidant activity, which was associated with the anti-melanogenic activity. Therefore, this study investigated the physicochemical characteristics and the anti-melanogenesis effect of pectin extracted from wampee fruit in A375 cells. METHODS: The physicochemical characterization of pectin from wampee fruit was investigated by gel chromatography (GCP), FT-IR spectroscopy, and NMR spectroscopy methods. The anti-melanogenesis effects and mechanism were evaluated by mushroom tyrosine enzyme and human melanin cell model in vitro. RESULTS: The results showed that a molecular weight of 5.271 × 105 Da wampee fruit pectin (WFP) were mainly composed of mannose (Man), ribose (Rib), rhamnose (Rha), glucuronic acid (Glc A), glucose (Glc), galacturonic acid (Gal A), galactose (Gal), and arabinose (Ara), which linked with →4)-ß-D-Galp-(1 → units. The current study revealed that WFP could significantly suppress mushroom TRY activity in vitro. Furtherly, WFP significantly reduced intracellular and extracellular melanin formation in A375 melanoma cells depending on the presence of alpha-melanocyte stimulating hormone (α-MSH). TRY activity was only inhibited in α-MSH treated A375 cells. Western blot analysis demonstrated that WFP reverse α-MSH induced melanogenesis in A375 melanoma cells, including in down-regulated TRY, TYRP-1, TYRP-2, MITF and CREB expressions. CONCLUSION: These results indicated that WFP could inhibit α-MSH induced melanogenesis in A375 melanoma cells via α-MSH/TRY pathway. In conclusion, these data provided a new perspective to annotate WFP anti-melanogenesis activity mechanism.


Assuntos
Melanoma , alfa-MSH , Linhagem Celular Tumoral , Frutas , Humanos , Melaninas , Fator de Transcrição Associado à Microftalmia/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Pectinas/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , alfa-MSH/metabolismo , alfa-MSH/farmacologia
19.
Biochim Biophys Acta Mol Basis Dis ; 1868(10): 166472, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35752384

RESUMO

During the epidemic, the individuals with underlying diseases usually have a higher rate of mortality. Diabetes is highly prevalent worldwide, making it a frequent comorbidity in dengue fever patients. Therefore, understanding the relationship between dengue virus (DENV) infection and diabetes is important. We first demonstrated that DENV-3 infection down-regulated the expression of IRS-1. In vitro, treatment of HepG2 cells with TNF-α inhibitors and siRNA proved that after DENV-3 infection in HepG2 cells, cellular TNF-α secretion was increased, which negatively regulated IRS-1, thereby leading to an insulin-resistant state. In vivo, DENV-3 induced insulin resistance (IR) in hepatocytes by promoting the secretion of TNF-α and inhibiting the expression of IRS-1 was proved. In vivo approaches also showed that after DENV-3 infection, TNF-α levels in the serum of C57BL/6 mice with insulin resistance increased, and upon TNF-α antagonist III treatment, IRS-1 expression in the liver, reduced by infection, was upregulated. In addition, transcriptomic analysis revealed more negative regulatory events in the insulin receptor signaling pathway after DENV-3 infection. This is the first report of a link between DENV-3 infection and insulin resistance, and it lays a foundation for further research.


Assuntos
Vírus da Dengue , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina , Animais , Vírus da Dengue/metabolismo , Regulação para Baixo , Resistência à Insulina/genética , Camundongos , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
20.
Int J Biol Macromol ; 211: 441-449, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35577191

RESUMO

Dendrobium huoshanense, a valuable traditional Chinese herb, is widely used to prolong life in China. Our study aims to characterize the structure and osteogenesis-promotion effects of a heteropolysaccharide component isolated from Dendrobium huoshanense (DHPW1). The structure of DHPW1 was characterized using gas chromatography-mass spectrometry and nuclear magnetic resonance, while its osteogenic activity was evaluated using MG-63 cells and zebrafish skulls. The results showed that the molecular weight of DHPW1 was 230 kDa and it was mainly composed of mannose and glucose. In addition, the DHPW1 backbone consisted of (1 â†’ 4)-linked-ß-D-Mannopyranosyl and (1 â†’ 4)-linked-ß-d-Glucopyranosyl. Furthermore, DHPW1 significantly increased ALP activity and mineralized nodule formation in MG-63 cells. DHPW1 in zebrafish skull models significantly enhanced the relative fluorescence intensity of bone mass and increased the degree of bone mineralization. These results suggested that the DHPW1 component in D. huoshanense has potential to promote osteogenesis.


Assuntos
Dendrobium , Animais , Dendrobium/química , Carboidratos da Dieta , Osteogênese , Polissacarídeos/química , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...