Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4252, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762594

RESUMO

Multiferroic materials, which simultaneously exhibit ferroelectricity and magnetism, have attracted substantial attention due to their fascinating physical properties and potential technological applications. With the trends towards device miniaturization, there is an increasing demand for the persistence of multiferroicity in single-layer materials at elevated temperatures. Here, we report high-temperature multiferroicity in single-layer CuCrSe2, which hosts room-temperature ferroelectricity and 120 K ferromagnetism. Notably, the ferromagnetic coupling in single-layer CuCrSe2 is enhanced by the ferroelectricity-induced orbital shift of Cr atoms, which is distinct from both types I and II multiferroicity. These findings are supported by a combination of second-harmonic generation, piezo-response force microscopy, scanning transmission electron microscopy, magnetic, and Hall measurements. Our research provides not only an exemplary platform for delving into intrinsic magnetoelectric interactions at the single-layer limit but also sheds light on potential development of electronic and spintronic devices utilizing two-dimensional multiferroics.

2.
Adv Mater ; : e2405178, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38762788

RESUMO

Graphyne (GY) and graphdiyne (GDY)-based monolayers represent the next generation 2D carbon-rich materials with tunable structures and properties surpassing those of graphene. However, the detection of band formation in atomically thin GY/GDY analogues has been challenging, as both long-range order and atomic precision have to be fulfilled in the system. The present work reports direct evidence of band formation in on-surface synthesized metallated Ag-GDY sheets with mesoscopic (≈1 µm) regularity. Employing scanning tunneling and angle-resolved photoemission spectroscopies, energy-dependent transitions of real-space electronic states above the Fermi level and formation of the valence band are respectively observed. Furthermore, density functional theory (DFT) calculations corroborate the observations and reveal that doubly degenerate frontier molecular orbitals on a honeycomb lattice give rise to flat, Dirac and Kagome bands close to the Fermi level. DFT modeling also indicates an intrinsic band gap for the pristine sheet material, which is retained for a bilayer with h-BN, whereas adsorption-induced in-gap electronic states evolve at the synthesis platform with Ag-GDY decorating the (111) facet of silver. These results illustrate the tremendous potential for engineering novel band structures via molecular orbital and lattice symmetries in atomically precise 2D carbon materials.

3.
Adv Mater ; 36(23): e2313511, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38597395

RESUMO

Moiré superlattices, consisting of rotationally aligned 2D atomically thin layers, provide a highly novel platform for the study of correlated quantum phenomena. However, reliable and efficient construction of moiré superlattices is challenging because of difficulties to accurately angle-align small exfoliated 2D layers and the need to shun wet-transfer processes. Here, efficient and precise construction of various moiré superlattices is demonstrated by picking up and stacking large-area 2D mono- or few-layer crystals with predetermined crystal axes, made possible by a gold-template-assisted mechanical exfoliation method. The exfoliated 2D layers are semiconductors, superconductors, or magnets and their high quality is confirmed by photoluminescence and Raman spectra and by electrical transport measurements of fabricated field-effect transistors and Hall devices. Twisted homobilayers with angle-twisting accuracy of ≈0.3°, twisted heterobilayers with sub-degree angle-alignment accuracy, and multilayer superlattices are precisely constructed and characterized by their moiré patterns, interlayer excitons, and second harmonic generation. The present study paves the way for exploring emergent phenomena in moiré superlattices.

4.
Adv Sci (Weinh) ; 11(25): e2400967, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38626379

RESUMO

Recently, the altermagnetic materials with spin splitting effect (SSE), have drawn significant attention due to their potential to the flexible control of the spin polarization by the Néel vector. Here, the direct and inverse altermagnetic SSE (ASSE) in the (101)-oriented RuO2 film with the tilted Néel vector are reported. First, the spin torque along the x-, y-, and z-axis is detected from the spin torque-induced ferromagnetic resonance (ST-FMR), and the z-spin torque emerges when the electric current is along the [010] direction, showing the anisotropic spin splitting of RuO2. Further, the current-induced modulation of damping is used to quantify the damping-like torque efficiency (ξDL) in RuO2/Py, and an anisotropic ξDL is obtained and maximized for the current along the [010] direction, which increases with the reduction of the temperature, indicating the present of ASSE. Next, by way of spin pumping measurement, the inverse altermagnetic spin splitting effect (IASSE) is studied, which also shows a crystal direction-dependent anisotropic behavior and temperature-dependent behavior. This work gives a comprehensive study of the direct and inverse ASSE effects in the altermagnetic RuO2, inspiring future altermagnetic materials and devices with flexible control of spin polarization.

5.
Nat Commun ; 15(1): 197, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172091

RESUMO

Branched flows occur ubiquitously in various wave systems, when the propagating waves encounter weak correlated scattering potentials. Here we report the experimental realization of electrical tuning of the branched flow of light using a nematic liquid crystal (NLC) system. We create the physical realization of the weakly correlated disordered potentials of light via the inhomogeneous orientations of the NLC. We demonstrate that the branched flow of light can be switched on and off as well as tuned continuously through the electro-optical properties of NLC film. We further show that the branched flow can be manipulated by the polarization of the incident light due to the optical anisotropy of the NLC film. The nature of the branched flow of light is revealed via the unconventional intensity statistics and the rapid fidelity decay along the light propagation. Our study unveils an excellent platform for the tuning of the branched flow of light which creates a testbed for fundamental physics and offers a new way for steering light.

6.
Nano Lett ; 23(17): 7838-7844, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37590032

RESUMO

Retaining ferroelectricity in ultrathin films or nanostructures is crucial for miniaturizing ferroelectric devices, but it is a challenging task due to intrinsic depolarization and size effects. In this study, we have shown that it is possible to stably maintain in-plane polarization in an extremely thin, one-unit-cell thick epitaxial Bi2WO6 film. The use of a perfectly lattice-matched NdGaO3 (110) substrate for the Bi2WO6 film minimizes strain and enhances stability. We attribute the residual polarization in this ultrathin film to the crystal stability of the Bi-O octahedral framework against structural distortions. Our findings suggest that ferroelectricity can surpass the critical thickness limit through proper strain engineering, and the Bi2WO6/NdGaO3 (110) system presents a potential platform for designing low-energy consumption, nonvolatile ferroelectric memories.

8.
Soft Matter ; 19(24): 4483-4490, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37272958

RESUMO

As electrically generated solitons in liquid crystals, directrons represent intriguing structures promising extensive application prospects in the areas of microcargo vehicles, microreactors, and logic devices. However, manipulating directrons along elaborate predetermined trajectories still remains to be largely explored. In this work, the strategy of constructing high-resolution periodic alignment fields for directrons via the polarization holography photoalignment technique is presented. The optimum exposure dose for directrons to form over a broad range of electric fields is determined to be 32.4 J cm-2 for the alignment layers with 1 wt% azo dye SD1. Zigzag and fishhook-shaped trajectories of directrons are realized with two orthogonal polarized beams. The resolution for zigzag steering of directrons is evaluated to be approximately 56 µm to 80 µm, about three to four times the length of directrons. These results not only enrich the forms of motion of directrons, but also lay the foundations for customized trajectories of directrons in future developments.

9.
Nano Lett ; 23(12): 5610-5616, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37321211

RESUMO

Two-dimensional checkerboard lattice, the simplest line-graph lattice, has been intensively studied as a toy model, while material design and synthesis remain elusive. Here, we report theoretical prediction and experimental realization of the checkerboard lattice in monolayer Cu2N. Experimentally, monolayer Cu2N can be realized in the well-known N/Cu(100) and N/Cu(111) systems that were previously mistakenly believed to be insulators. Combined angle-resolved photoemission spectroscopy measurements, first-principles calculations, and tight-binding analysis show that both systems host checkerboard-derived hole pockets near the Fermi level. In addition, monolayer Cu2N has outstanding stability in air and organic solvents, which is crucial for further device applications.

10.
Nat Commun ; 14(1): 3690, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344475

RESUMO

Polaron is a composite quasiparticle derived from an excess carrier trapped by local lattice distortion, and it has been studied extensively for decades both theoretically and experimentally. However, atomic-scale creation and manipulation of single-polarons in real space have still not been achieved so far, which precludes the atomistic understanding of the properties of polarons as well as their applications. Herein, using scanning tunneling microscopy, we succeeded to create single polarons in a monolayer two-dimensional (2D) semiconductor, CoCl2. Combined with first-principles calculations, two stable polaron configurations, centered at atop and hollow sites, respectively, have been revealed. Remarkably, a series of manipulation progresses - from creation, erasure, to transition - can be accurately implemented on individual polarons. Our results pave the way to understand the physics of polaron at atomic level, and the easy control of single polarons in 2D semiconductor may open the door to 2D polaronics including the data storage.

11.
Small ; 19(36): e2302192, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37127860

RESUMO

Conventional two-dimensional electron gas (2DEG) typically occurs at the interface of semiconductor heterostructures and noble metal surfaces, but it is scarcely observed in individual 2D semiconductors. In this study, few-layer gallium selenide (GaSe) grown on highly ordered pyrolytic graphite (HOPG) is demonstrated using scanning tunneling microscopy and spectroscopy (STM/STS), revealing that the coexistence of quantum well states (QWS) and 2DEG. The QWS are located in the valence bands and exhibit a peak feature, with the number of quantum wells being equal to the number of atomic layers. Meanwhile, the 2DEG is located in the conduction bands and exhibits a standing-wave feature. Additionally, monolayer GaSe/HOPG heterostructures with different stacking angles (0°, 33°, 8°) form distinct moiré patterns that arise from lattice mismatch and angular rotation between adjacent atomic layers in 2D materials, which effectively modulate the electron effective mass, charge redistribution, and band gap of GaSe. Overall, this work reveals a paradigm of band engineering based on layer numbers and moiré patterns that can modulate the electronic properties of 2D materials.

12.
Molecules ; 28(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37175113

RESUMO

Matrix metalloproteinase-9 (MMP-9), one of the most investigated and studied biomarkers of the MMPs family, is a zinc-dependent proteolytic metalloenzyme whose primary function is degrading the extracellular matrix (ECM). It has been proved that MMP-9 expression elevates in multiple pathological conditions, including thyroid carcinoma. MMP-9 has a detectable higher level in malignant or metastatic thyroid tumor tissues than in normal or benign tissues and acts as an additional marker to distinguish different tumor stages because of its close correlations with clinical features, such as lymph node metastasis, TNM stage, tumor size and so on. Natural and non-natural MMP-9 inhibitors suppress its expression, block the progression of diseases, and play a role in therapy consequently. MMP-9 inhibitory molecules also assist in treating thyroid tumors by suppressing the proliferation, invasion, migration, metastasis, viability, adhesion, motility, epithelial-mesenchymal transition (EMT), and other risk factors of different thyroid cancer cells. In a word, discovering and designing MMP-9 inhibitors provide great therapeutic effects and promising clinical values in various types of thyroid carcinoma.


Assuntos
Metaloproteinase 9 da Matriz , Neoplasias da Glândula Tireoide , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Inibidores de Metaloproteinases de Matriz/uso terapêutico , Metaloproteinases da Matriz
13.
Nat Commun ; 14(1): 2757, 2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37179407

RESUMO

Ferroelectricity in ultrathin two-dimensional (2D) materials has attracted broad interest due to potential applications in nonvolatile memory, nanoelectronics and optoelectronics. However, ferroelectricity is barely explored in materials with native centro or mirror symmetry, especially in the 2D limit. Here, we report the first experimental realization of room-temperature ferroelectricity in van der Waals layered GaSe down to monolayer with mirror symmetric structures, which exhibits strong intercorrelated out-of-plane and in-plane electric polarization. The origin of ferroelectricity in GaSe comes from intralayer sliding of the Se atomic sublayers, which breaks the local structural mirror symmetry and forms dipole moment alignment. Ferroelectric switching is demonstrated in nano devices fabricated with GaSe nanoflakes, which exhibit exotic nonvolatile memory behavior with a high channel current on/off ratio. Our work reveals that intralayer sliding is a new approach to generate ferroelectricity within mirror symmetric monolayer, and offers great opportunity for novel nonvolatile memory devices and optoelectronics applications.

14.
Nat Commun ; 14(1): 2100, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055409

RESUMO

The origin of homochirality in nature is an important but open question. Here, we demonstrate a simple organizational chiral system constructed by achiral carbon monoxide (CO) molecules adsorbed on an achiral Au(111) substrate. Combining scanning tunneling microscope (STM) measurements with density-functional-theory (DFT) calculations, two dissymmetric cluster phases consisting of chiral CO heptamers are revealed. By applied high bias voltage, the stable racemic cluster phase can be transformed into a metastable uniform phase consisting of CO monomers. Further, during the recondensation of a cluster phase after lowering down bias voltage, an enantiomeric excess and its chiral amplification occur, resulting in a homochirality. Such asymmetry amplification is found to be both kinetically feasible and thermodynamically favorable. Our observations provide insight into the physicochemical origin of homochirality through surface adsorption and suggest a general phenomenon that can influence enantioselective chemical processes such as chiral separations and heterogeneous asymmetric catalysis.

15.
Proc Natl Acad Sci U S A ; 120(11): e2215131120, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36877857

RESUMO

The synthesis and characterization of small boron clusters with unique size and regular arrangement are crucial for boron chemistry and two-dimensional borophene materials. In this study, together with theoretical calculations, the joint molecular beam epitaxy and scanning tunneling microscopy experiments achieve the formation of unique B5 clusters on monolayer borophene (MLB) on a Cu(111) surface. The B5 clusters tend to selectively bind to specific sites of MLB with covalent boron-boron bonds in the periodic arrangement, which can be ascribed to the charge distribution and electron delocalization character of MLB and also prohibits nearby co-adsorption of B5 clusters. Furthermore, the close-packed adsorption of B5 clusters would facilitate the synthesis of bilayer borophene, exhibiting domino effect-like growth mode. The successful growth and characterization of uniform boron clusters on a surface enrich the boron-based nanomaterials and reveal the essential role of small clusters during the growth of borophene.

16.
J Youth Adolesc ; 52(4): 826-839, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36763318

RESUMO

Coercive parenting has been identified as a prevalent parenting style in Chinese society. Previous research has shown that personal attributes such as empathic concern moderate the positive impact of coercive parenting on juvenile delinquency. However, there has been a paucity of research examining if and how such a moderating mechanism would operate differently across genders. Drawing on the two-wave survey data from a sample of 1088 Chinese adolescents (mean of age = 13.82, SD = 1.49; 49.7% females), this study found that compared to those with lower empathic concern, adolescents with higher empathic concern were less delinquent under a low-to-moderate level of coercive parenting, but more delinquent when coercive control reached a medium-to-high level. Furthermore, multiple group analyses revealed gender differences in the moderation mechanism, such that empathic concern only significantly moderated the relationship in females. The findings underscore the importance of considering adolescent personal characteristics and gender differences when examining the relationship between parenting styles and juvenile delinquency.


Assuntos
Delinquência Juvenil , Poder Familiar , Adolescente , Humanos , Masculino , Feminino , Fatores Sexuais , China , Empatia
17.
Sci Bull (Beijing) ; 67(13): 1345-1351, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36546267

RESUMO

Two-dimensional (2D) materials and their heterostructures have been intensively studied in recent years due to their potential applications in electronic, optoelectronic, and spintronic devices. Nonetheless, the realization of 2D heterostructures with atomically flat and clean interfaces remains challenging, especially for air-sensitive materials, which hinders the in-depth investigation of interface-induced phenomena and the fabrication of high-quality devices. Here, we circumvented this challenge by exfoliating 2D materials in an ultrahigh vacuum. Remarkably, ultraflat and clean substrate surfaces can assist the exfoliation of 2D materials, regardless of the substrate and 2D material, thus providing a universal method for the preparation of heterostructures with ideal interfaces. In addition, we studied the properties of two prototypical systems that cannot be achieved previously, including the electronic structure of monolayer phospherene and optical responses of transition metal dichalcogenides on different metal substrates. Our work paves the way to engineer rich interface-induced phenomena, such as proximity effects and moiré superlattices.

18.
Nat Commun ; 13(1): 7000, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36385244

RESUMO

The Su-Schrieffer-Heeger (SSH) model in a two-dimensional rectangular lattice features gapless or gapped Dirac cones with topological edge states along specific peripheries. While such a simple model has been recently realized in photonic/acoustic lattices and electric circuits, its material realization in condensed matter systems is still lacking. Here, we study the atomic and electronic structure of a rectangular Si lattice on Ag(001) by angle-resolved photoemission spectroscopy and theoretical calculations. We demonstrate that the Si lattice hosts gapped Dirac cones at the Brillouin zone corners. Our tight-binding analysis reveals that the Dirac bands can be described by a 2D SSH model with anisotropic polarizations. The gap of the Dirac cone is driven by alternative hopping amplitudes in one direction and staggered potential energies in the other one and hosts topological edge states. Our results establish an ideal platform to explore the rich physical properties of the 2D SSH model.

19.
ACS Nano ; 16(8): 13014-13021, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35943244

RESUMO

A theoretical ideal two-dimensional electron gas (2DEG) was characterized by a flat density of states independent of energy. Compared with conventional two-dimensional free-electron systems in semiconductor heterojunctions and noble metal surfaces, we report here the achievement of ideal 2DEG with multiple quantized states in few-layer InSe films. The multiple quantum well states (QWSs) in few-layer InSe films are found, and the number of QWSs is strictly equal to the number of atomic layers. The multiple stair-like DOS as well as multiple bands with parabolic dispersion both characterize ideal 2DEG features in these QWSs. Density functional theory calculations and numerical simulations based on quasi-bounded square potential wells described as the Kronig-Penney model provide a consistent explanation of 2DEG in the QWSs. Our work demonstrates that 2D van der Waals materials are ideal systems for realizing 2DEG hosted by multiple quantized Kronig-Penney states, and the semiconducting nature of the material provides a better chance for construction of high-performance electronic devices utilizing these states, for example, superlattice devices with negative differential resistance.

20.
Artigo em Inglês | MEDLINE | ID: mdl-35805651

RESUMO

Most of the research on adolescent substance use is from either the U.S, Europe, or other non-Eastern countries, but very little attention is paid to that in the Greater China Region. As a special administrative region of China, Macau is known for its gambling industry, its proximity to the Golden Triangle, and its lenient drug laws, all of which can be conducive to high-level drug use in the population, including its adolescents. Yet, the extent and patterns of adolescent substance use in Macau are not well understood. Using the data collected from two large representative samples of secondary school students in 2014 and 2018, this study provided population-based estimates of the prevalence rates of lifetime and past 30-day substance use among Macau adolescents in the two separate survey years. By comparing the two sets of estimates, it established the patterns of changes in cigarette smoking, alcohol use, and illicit drug use among adolescents in Macau during the period. Additionally, through the analysis of the data in the latest year, it identified risk factors for adolescent substance use in the special administrative region. Among the key results, the rates of cigarette smoking and illicit drug use were low to moderate while the rates of alcohol use were relatively high; cigarette smoking decreased during the period, but alcohol use and illicit drug use remained stable; Macau adolescents shared similar risk factors for substance use with adolescents elsewhere, but unique circumstances might exist to influence their alcohol consumption.


Assuntos
Comportamento do Adolescente , Jogo de Azar , Drogas Ilícitas , Transtornos Relacionados ao Uso de Substâncias , Adolescente , Consumo de Bebidas Alcoólicas/epidemiologia , Jogo de Azar/epidemiologia , Humanos , Macau/epidemiologia , Prevalência , Transtornos Relacionados ao Uso de Substâncias/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...