Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(11)2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37889792

RESUMO

This study aimed to investigate the effect of HMGCR inhibitors on egg yolk cholesterol content and its biological mechanisms. Four groups of 180-day-old laying hens (n = 8 cages/group, 6 laying hens/cage) were fed a corn/soybean-based diet (control) and the control diet supplemented with an HMGCR inhibitor at 60, 150, and 300 mg/kg for 4 weeks. The experimental results showed that adding HMGCR inhibitors of 150 mg/kg or more can significantly reduce the cholesterol content in the liver, yolk, serum, and pectoral muscles of laying hens. The RNA-seq results showed that compared with the control group, the addition of HMGCR inhibitors of 150 mg/kg or more to the diet significantly upregulated genes related to cholesterol synthesis in the liver, and the genes involved in steroid synthesis and metabolism, sterol synthesis and metabolism, and cholesterol synthesis and metabolism were all affected by the HMGCR inhibitors. In summary, adding HMGCR inhibitors of 150 mg/kg or more to the diet of hens can significantly reduce the cholesterol content in egg yolk. After the HMGCR inhibitors inhibited the activity of the liver HMGCR, they also altered the expression of genes related to cholesterol synthesis, bile acid synthesis, and cholesterol transport in the liver, and ultimately reduced cholesterol synthesis and cholesterol transport to the egg yolk.

2.
J Hazard Mater ; 459: 132013, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37467604

RESUMO

Deoxynivalenol (DON) is one of the most plentiful trichothecenes occurring in food and feed, which brings severe health hazards to both animals and humans. This study aims to investigate whether sodium butyrate (NaB) can protect the porcine intestinal barrier from DON exposure through promoting mitochondrial homeostasis. In a 4-week feeding experiment, 28 male piglets were allocated according to a 2 by 2 factorial arrangement of treatments with the main factors including supplementation of DON (< 0.8 vs. 4.0 mg/kg) and NaB (0.0 vs. 2 g/kg) in a corn/soybean-based diet. Dietary NaB supplementation mitigated the damaged mitochondrial morphology within the jejunal mucosa and the disrupted gut epithelial tight junctions irritated by DON. In IPEC-J2 cells, we found efficient recovery of the intestinal epithelial barrier occurred following NaB administration. This intestinal barrier reparation was facilitated by NaB-induced PCK2-mediated glyceroneogenesis and restoration of mitochondrial structure and function. In conclusion, we elucidated a mechanism of PCK2-mediated improvement of mitochondrial function by NaB to repair porcine intestinal barrier disruption during chronic DON exposure. Our findings highlight the promise of NaB for use in protecting against DON-induced gut epithelial tight junction disruption in piglets.


Assuntos
Tricotecenos , Humanos , Suínos , Animais , Masculino , Ácido Butírico/farmacologia , Ácido Butírico/metabolismo , Tricotecenos/toxicidade , Mucosa Intestinal/metabolismo , Mitocôndrias , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo
3.
Ecotoxicol Environ Saf ; 258: 114976, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37148750

RESUMO

Aflatoxin B1 (AFB1) and zearalenone (ZEN) cause serious damage to mammals, but few studies have investigated the impacts of these toxins on pregnant and lactating mammals. This study investigated the effects of ZEN on AFB1-induced intestinal and ovarian toxicity in pregnant and lactating rats. Based on the results, AFB1 reduces the digestion, absorption, and antioxidant capacity in the intestine, increases intestinal mucosal permeability, destroys intestinal mechanical barriers, and increases pathogenic bacteria' relative abundances. Simultaneously, ZEN can exacerbate the intestinal injury caused by AFB1. The intestines of the offspring were also damaged, but the damage was less severe than that observed for the dams. While AFB1 activates various signalling pathways in the ovary and affects genes related to endoplasmic reticulum stress, apoptosis, and inflammation, ZEN may exacerbate or antagonize the AFB1 toxicity on gene expression in the ovary through key node genes and abnormally expressed genes. Our study found that mycotoxins can not only directly damage the ovaries and affect gene expression in the ovaries but can also impact ovarian health by disrupting intestinal microbes. Mycotoxins are an important environmental pathogenic factor for intestinal and ovarian disease in pregnancy and lactation mammals.


Assuntos
Micotoxinas , Tricotecenos , Zearalenona , Animais , Ratos , Gravidez , Feminino , Zearalenona/toxicidade , Tricotecenos/toxicidade , Aflatoxina B1/toxicidade , Ovário , Lactação , Intestinos , Mamíferos
4.
Ecotoxicol Environ Saf ; 245: 114115, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36179448

RESUMO

Food and feed are frequently co-contaminated with aflatoxin B1 (AFB1) and zearalenone (ZEN). This study investigated the effects of ZEN on the AFB1-induced liver and mammary gland toxicity in pregnant and lactating rats. AFB1 and ZEN co-exposure inhibited the growth of rats and caused oxidative stress and inflammatory responses in the liver and mammary gland. Compared with the AFB1-only group, damage was aggravated in the AFB1 + 10 mg/kg ZEN group, and the AFB1 + 1 mg/kg ZEN group showed a reduction in some metrics. The metabolomic results of the mammary gland showed that metabolite changes were mainly in lipid, amino acid, and glucose metabolism. Compared with the AFB1 + 0 mg/kg ZEN group, the AFB1 + 1 mg/kg ZEN group had the most metabolite changes. Moreover, AFB1 and ZEN co-exposure reduced the levels of sex hormones and RNA m6A methylation in the mammary gland. We speculate that ZEN affects the toxicity of AFB1 to the liver and mammary gland by interfering with the function of sex hormones, regulating cell proliferation and metabolic processes.


Assuntos
Zearalenona , Aflatoxina B1/toxicidade , Aminoácidos , Animais , Feminino , Glucose , Lactação , Lipídeos , Fígado , Gravidez , RNA , Ratos , Zearalenona/toxicidade
5.
Microorganisms ; 10(9)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36144346

RESUMO

In this study, we explored the mechanism underlying Aspergillus flavus conidia germination inhibited by decreased water activity. The impact of low water activity was analyzed at 4 h, 8 h and 12 h. Additionally, we demonstrated that low water activity affected cell shape and decreased cell sizes. Transcriptomics found numerous differentially expressed genes (DEGs) during the first 12 h of germination, with 654 DEGs observed among 4 h, 8 h and 12 h. In particular, more DEGs were detected at 8 h of germinating. Therefore, proteomics was performed at 8 h, and 209 differentially expressed proteins (DEPs) were speculated, with 94 up-regulated and 115 down-regulated. Combined analysis of KEGG of transcriptomics and proteomics demonstrated that the dominant pathways were nutrient metabolism and translation. We also found several DEGs and DEPs in the Mitogen Activated Protein Kinase (MAPK) pathway. Therefore, we concluded that low water activity inhibited conidia germination, causing unregular morphology. In addition, low water activity influenced expression of creA, TreB in carbohydrate metabolism, Clr4, RmtA in amino acid metabolism and RPL37, RPL3 in translation in Aspergillus flavus.

6.
Food Chem Toxicol ; 163: 112921, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35307453

RESUMO

Deoxynivalenol (DON) is a mycotoxin frequently occurring in human and animal food worldwide, which raises increasing public health concerns. Growing evidence suggests that mitochondria is a pivotal molecular target for DON. However, the contribution of mitochondrial dysfunction to the pathogenesis of DON-induced gut epithelial barrier disruption remains poorly understood. In an animal experiment, piglets exposed to 2.89 mg DON/kg feed for 4 weeks showed altered metabolomic profiling in the serum and compromised transcriptome in the jejunum. DON exposure also impaired mitochondrial structure in the jejunal mucosa, corresponding with dysfunction of the tight junctions. In IPEC-J2 cells, metabolomic and transcriptomic analyses revealed that DON exposure perturbed biological processes occurring in the mitochondria and disordered the expression of genes involved in mitochondrial energy metabolism. Fuel utilization from glucose was affected by DON exposure, as were mitochondrial morphological dynamics leading to increased fragmentation. A marked loss of Na+/glucose cotransporter (SLC5A1) and peroxisome proliferator activated receptor-γ co-activator 1α (PGC1α) was observed in DON-treated cells. Taken together, our data highlight the critical role of impaired mitochondrial energy metabolism and mitochondrial biogenesis in abnormal intestinal tight junction upon DON exposure, and provide a potential mitochondrial target for intestinal mucosal restoration following DON exposure.


Assuntos
Células Epiteliais , Junções Íntimas , Animais , Linhagem Celular , Células Epiteliais/metabolismo , Glucose/metabolismo , Mucosa Intestinal/metabolismo , Mitocôndrias/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Suínos , Junções Íntimas/metabolismo , Tricotecenos
7.
Toxins (Basel) ; 14(2)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35202169

RESUMO

Fusarium graminearum is a harmful pathogen causing head blight in cereals such as wheat and barley, and thymol has been proven to inhibit the growth of many pathogens. This study aims to explore the fungistatic effect of thymol on F. graminearum and its mechanism. Different concentrations of thymol were used to treat F. graminearum. The results showed that the EC50 concentration of thymol against F. graminearum was 40 µg/mL. Compared with the control group, 40 µg/mL of thymol reduced the production of Deoxynivalenol (DON) and 3-Ac-DON by 70.1% and 78.2%, respectively. Our results indicate that thymol can effectively inhibit the growth and toxin production of F. graminearum and cause an extensive transcriptome response. Transcriptome identified 16,727 non-redundant unigenes and 1653 unigenes that COG did not annotate. The correlation coefficients between samples were all >0.941. When FC was 2.0 times, a total of 3230 differential unigenes were identified, of which 1223 were up-regulated, and 2007 were down-regulated. Through the transcriptome, we confirmed that the expression of many genes involved in F. graminearum growth and synthesis of DON and other secondary metabolites were also changed. The gluconeogenesis/glycolysis pathway may be a potential and important way for thymol to affect the growth of F. graminearum hyphae and the production of DON simultaneously.


Assuntos
Antifúngicos/química , Fusarium/crescimento & desenvolvimento , Fusarium/metabolismo , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Micotoxinas/biossíntese , Micotoxinas/química , Timol/química , Transcriptoma
8.
Antioxidants (Basel) ; 10(8)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34439516

RESUMO

Aflatoxin B1 (AFB1), a threatening mycotoxin, usually provokes oxidative stress and causes hepatotoxicity in animals and humans. Luteolin (LUTN), well-known as an active phytochemical agent, acts as a strong antioxidant. This research was designed to investigate whether LUTN exerts protective effects against AFB1-induced hepatotoxicity and explore the possible molecular mechanism in mice. A total of forty-eight mice were randomly allocated following four treatment groups (n = 12): Group 1, physiological saline (CON). Group 2, treated with 0.75 mg/kg BW aflatoxin B1 (AFB1). Group 3, treated with 50 mg/kg BW luteolin (LUTN), and Group 4, treated with 0.75 mg/kg BW aflatoxin B1 + 50 mg/kg BW luteolin (AFB1 + LUTN). Our findings revealed that LUTN treatment significantly alleviated growth retardation and rescued liver injury by relieving the pathological and serum biochemical alterations (ALT, AST, ALP, and GGT) under AFB1 exposure. LUTN ameliorated AFB1-induced oxidative stress by scavenging ROS and MDA accumulation and boosting the capacity of the antioxidant enzyme (CAT, T-SOD, GSH-Px and T-AOC). Moreover, LUTN treatment considerably attenuates the AFB1-induced apoptosis in mouse liver, as demonstrated by declined apoptotic cells percentage, decreased Bax, Cyt-c, caspase-3 and caspase-9 transcription and protein with increased Bcl-2 expression. Notably, administration of LUTN up-regulated the Nrf2 and its associated downstream molecules (HO-1, NQO1, GCLC, SOD1) at mRNA and protein levels under AFB1 exposure. Our results indicated that LUTN effectively alleviated AFB1-induced liver injury, and the underlying mechanisms were associated with the activation of the Nrf2 signaling pathway. Taken together, LUTN may serve as a potential mitigator against AFB1-induced liver injury and could be helpful for the development of novel treatment to combat liver diseases in humans and/or animals.

9.
Anim Nutr ; 7(3): 587-594, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34377845

RESUMO

Zearalenone (ZEN) is one of the most common contaminating mycotoxins and is mainly produced by Fusarium graminearum. ZEN and its metabolites can interfere with estrogen function and affect animals' reproductive ability. Pigs are most susceptible to ZEN, and ZEN is less harmful to poultry than to pigs. The exact mechanism for the difference in susceptibility remains unclear. In this review, we summarized some possible reasons for the relative insensitivity of poultry to ZEN, such as the lower total amount of α-zearalenol (α-ZOL) and the α-ZOL-to-ß-ZOL ratio which reduce the toxicity of ZEN to poultry. The faster hepatic and enteric circulation, and excretion capacity in poultry can excrete more ZEN and its metabolites. There are other possible factors such as the transformation of intestinal microorganisms, differences in hydroxysteroid dehydrogenases' activity, high estrogen levels, and low estrogen receptors affinity which can also cause poultry to be relatively insensitive to ZEN. In this review, we summarized the hazards, pollution status, metabolic pathways, and some measures to mitigate ZEN's harmfulness. Specifically, we discussed the possible mechanisms of low reproductive toxicity by ZEN in poultry.

10.
Food Chem Toxicol ; 153: 112214, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33930483

RESUMO

Deoxynivalenol (DON) is a mycotoxin predominantly produced by Fusarium genus, and widely contaminates cereals and associated products all over the world. The intestinal toxicity of DON is well established. However, intestinal homeostasis involves mitochondria, which has rarely been considered in the context of DON exposure. We summarize the recent knowledge on mitochondria as a key player in maintaining intestinal homeostasis based on their functions in cellular energy metabolism, redox homeostasis, apoptosis, intestinal immune responses, and orchestrated bidirectional cross-talk with gut microbe. In addition, we discuss the pivotal roles of mitochondrial dysfunction in the intestinal toxicity of DON and highlight promising mitochondrial-targeted therapeutics for DON-induced intestinal injury. Recent studies support that the intestinal toxicity of DON is attributed to mitochondrial dysfunction as a critical factor. Mitochondrial dysfunction characterized by failure in respiratory capacities and ROS overproduction has been demonstrated in intestinal cells exposed to DON. Perturbation of mitochondrial respiration leading to ROS accumulation is implicated in the early initiation of apoptosis. DON-induced intestinal inflammatory response is tightly linked to the mitochondrial ROS, whereas immunosuppression is intimately associated with mitophagy inhibition. DON perturbs the orchestrated bidirectional cross-talk between gut microbe and host mitochondria, which may be involved in DON-induced intestinal toxicity.


Assuntos
Gastroenteropatias/induzido quimicamente , Mitocôndrias/efeitos dos fármacos , Doenças Mitocondriais/induzido quimicamente , Tricotecenos/toxicidade , Animais , Homeostase/efeitos dos fármacos , Humanos , Intestinos/efeitos dos fármacos , Intestinos/fisiologia
11.
Ecotoxicol Environ Saf ; 209: 111823, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33360594

RESUMO

Aflatoxin is a known mycotoxin that pollutes various grains widely in the environment. Aflatoxin B1 (AFB1) and Aflatoxin M1 (AFM1) have been shown to induce cytotoxicity in many cells, yet their effects on mammary epithelial cells remain unclear. In this study, we examined the toxicity and the effects of AFB1 and AFM1 on bovine mammary epithelial cells (BME cells). The cells were treated with AFB1 or AFM1 at a concentration of 0-10 mg/L for 24 or 48 h, followed by cytotoxicity assays, flow cytometry, and transcriptomics. Our results demonstrated that AFB1 and AFM1 induced cell proliferation inhibition, apoptosis and cell cycle arrest. However, the level of intracellular reactive oxygen species has no significant difference. The RNA-Seq results also showed that AFB1 and AFM1 changed many related gene expressions like apoptosis and oxidative stress, cycle, junction, and signaling pathway. Taken together, AFB1 and AFM1 were found to affect cytotoxicity and related gene changes in BME cells. Notably, this study reported that 2 mg/L of AFB1 and AFM1 affected the expression of methylation-related genes, and ultimately altered the rate of m6A methylation in RNA. It may provide a potential direction for toxins to indirectly regulate gene expression by affecting RNA methylation modification. Our research provides some novel insights and data about AFB1 and AFM1 toxicity in BME cells.


Assuntos
Aflatoxina B1/toxicidade , Aflatoxina M1/toxicidade , Testes de Toxicidade , Transcriptoma/fisiologia , Animais , Apoptose/efeitos dos fármacos , Bovinos , Contagem de Células , Proliferação de Células , Células Epiteliais/efeitos dos fármacos , Feminino , Citometria de Fluxo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio
12.
J Agric Food Chem ; 68(15): 4515-4527, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32208605

RESUMO

This study aims to determine whether sodium butyrate (SB) could antagonize deoxynivalenol (DON)-induced intestinal epithelial dysfunction. In a four-week feeding trial, twenty-eight barrows were randomly divided into four treatments: (1) uncontaminated basal diet (control); (2) 4 mg/kg DON-contaminated diet (DON); (3) basal diet supplemented with 0.2% SB (SB); and (4) 4 mg/kg DON + 0.2% SB (DON + SB). A decrease in performance was observed in DON-exposed animals, which was prevented by the dietary SB supplementation. DON exposure also depressed the expression of host defense peptides (HDPs) in the intestine, impaired the intestinal barrier integrity, and disturbed the gut microbiota homeostasis. These alterations induced by DON were attenuated by SB supplementation. The supplementation of 0.2% SB ameliorated the adverse effects of DON on the liver in terms of hepatic lesions as well as serum concentrations of alkaline phosphatase and aspartate aminotransferase. In IPEC-J2 cells, pretreatment with SB alleviated the DON-induced decreased cell viability. Additionally, the NOD2/caspase-12 pathway participated in the alleviation of SB on DON-induced diminished HDP expression. Taken together, these data demonstrated that SB protected piglets from DON-induced intestinal barrier dysfunction potentially through stimulation of intestinal HDP assembly and regulation in gut microbiota.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Ácido Butírico/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Enteropatias/veterinária , Mucosa Intestinal/efeitos dos fármacos , Substâncias Protetoras/administração & dosagem , Doenças dos Suínos/prevenção & controle , Tricotecenos/toxicidade , Animais , Feminino , Enteropatias/metabolismo , Enteropatias/microbiologia , Enteropatias/prevenção & controle , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Masculino , Suínos , Doenças dos Suínos/metabolismo , Doenças dos Suínos/microbiologia , Desmame
13.
Toxins (Basel) ; 11(11)2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31731782

RESUMO

Trefoil factors (TFFs) are regulatory peptides playing critical roles in mucosal repair and protection against a variety of insults within the gastrointestinal tract. This work aimed to explore the effects of deoxynivalenol (DON) on intestinal TFFs expression using in vivo and in vitro models. In an animal trial, twenty-four 28-d-old barrows (Duroc × Landrace × Large White; initial body weight = 7.6 ± 0.7 kg) were randomly divided into three treatments for 28 days, including a control diet (0.61 mg DON/kg feed), and two levels of DON-contaminated diets containing 1.28 and 2.89 mg DON/kg feed, respectively. Piglets exposed to DON had lower mRNA expression of TFF1, TFF2, TFF3, as well as Claudin-4 in the intestine (P < 0.05). Dietary DON exposure decreased the protein levels of TFF2 and TFF3 in the jejunum as demonstrated by western blot and immunohistochemistry. In intestinal porcine epithelial cells (IPEC-J2), DON depressed the mRNA expression of TFF2, TFF3, and Claudin-4. Overexpression of sterile alpha motif (SAM) pointed domain E26 transformation-specific (ETS) factor (SPDEF) was found to attenuate DON-induced suppression of TFFs in IPEC-J2 cells. Altogether, our work shows, for the first time, that dietary DON exposure depresses the expression of intestinal TFFs in piglets. Given the fundamental role of TFFs in intestinal mucosal homeostasis, our observations indicate that the DON content in animal feed should be strictly controlled based on the existing regulation for DON.


Assuntos
Intestinos/efeitos dos fármacos , Fatores Trefoil/metabolismo , Tricotecenos/farmacologia , Desmame , Animais , Linhagem Celular , Masculino , RNA Mensageiro/genética , Suínos , Fatores Trefoil/genética
14.
J Agric Food Chem ; 67(17): 4976-4986, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30977367

RESUMO

This study investigated the potential link between gut microbiota and deoxynivalenol (DON)-induced feed refusal. A total of 24 barrows were randomly divided into one of three diets containing 0.61 (control diet), 1.28, or 2.89 mg DON/kg feed for 28 days. Dietary exposure to DON at 2.89 mg/kg significantly decreased the relative abundances of unclassified_f_Lachnospiraceae, Phascolarctobacterium and Ruminococcaceae_UCG-014, whereas it increased Prevotella_9 and norank_f_Prevotellaceae in the cecal digesta. Moreover, the decreased relative abundance of unclassified_f_Lachnospiraceae induced by DON exposure was positively correlated with average daily feed intake. Exposure to DON increased the serum concentrations of glucagon-like peptide-1 and peptide YY but reduced the levels of serum growth hormone and insulin-like growth factor 1. In summary, these findings suggest that chronic dietary exposure to DON induces disturbances of intestinal microbiota. Disturbed appetite-regulating hormones and somatotropic-axis-hormone secretion induced by negative microbial changes could be the potential mechanisms for DON-induced anorexia.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Suínos/metabolismo , Tricotecenos/efeitos adversos , Ração Animal/análise , Animais , Ingestão de Alimentos/efeitos dos fármacos , Feminino , Contaminação de Alimentos/análise , Peptídeo 1 Semelhante ao Glucagon/sangue , Peptídeo 1 Semelhante ao Glucagon/genética , Hormônio do Crescimento/sangue , Masculino , Suínos/sangue , Suínos/microbiologia , Tricotecenos/metabolismo , Desmame
15.
Toxins (Basel) ; 11(4)2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30987049

RESUMO

The objective of this study was to evaluate the ability of a modified hydrated sodium calcium aluminosilicate (HSCAS) adsorbent to reduce the toxicity of T-2 toxin in broilers. Ninety-six one-day-old male broilers were randomly allocated into four experimental groups with four replicates of six birds each. The four groups, 1-4, received a basal diet (BD), a BD plus 6.0 mg/kg T-2 toxin, a BD plus 6.0 mg/kg T-2 toxin with 0.05% modified HSCAS adsorbent, and a BD plus 0.05% modified HSCAS adsorbent, respectively, for two weeks. Growth performance, nutrient digestibility, serum biochemistry, and small intestinal histopathology were analyzed. Compared to the control group, dietary supplementation of T-2 toxin decreased (p < 0.05) body weight gain, feed intake, and the feed conversion ratio by 11.4%-31.8% during the whole experiment. It also decreased (p < 0.05) the apparent metabolic rates of crude protein, calcium, and total phosphorus by 14.9%-16.1%. The alterations induced by T-2 toxin were mitigated (p < 0.05) by the supplementation of the modified HSCAS adsorbent. Meanwhile, dietary modified HSCAS adsorbent supplementation prevented (p < 0.05) increased serum aspartate aminotransferase by T-2 toxin at d 14. It also prevented (p < 0.05) T-2 toxin-induced morphological changes and damage in the duodenum, jejunum, and ileum of broilers. However, dietary supplementation of the modified HSCAS adsorbent alone did not affect (p > 0.05) any of these variables. In conclusion, these findings indicate that the modified HSCAS adsorbent could be used against T-2 toxin-induced toxicity in growth performance, nutrient digestibility, and hepatic and small intestinal injuries in chicks.


Assuntos
Silicatos de Alumínio/química , Galinhas/fisiologia , Toxina T-2/química , Toxina T-2/toxicidade , Adsorção , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Proteínas Sanguíneas/análise , Suplementos Nutricionais , Digestão/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/patologia , Fígado/efeitos dos fármacos , Masculino , Nutrientes
16.
Toxins (Basel) ; 10(12)2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30558299

RESUMO

Host defense peptides (HDPs) are efficient defense components of the innate immune system, playing critical roles in intestinal homeostasis and protection against pathogens. This study aims to investigate the interference effects of DON on the intestinal porcine HDPs expression in piglets and intestinal porcine epithelial cell line (IPEC-J2) cells, and elucidate the underlying mechanisms through which it functions. In an animal experiment, intestinal HDPs were determined in weaned piglets fed control and 1.28 mg/kg or 2.89 mg/kg DON-contaminated diets. Dietary exposure to DON significantly decreased piglet average daily gain, increased intestinal permeability and depressed the expression of porcine ß-defensin1 (pBD1), pBD2, pBD3, epididymis protein 2 splicing variant C (pEP2C), PMAP23, and proline/arginine-rich peptide of 39 amino acids (PR39) in the intestine (p < 0.05). In IPEC-J2 cells, DON decreased cell viability and inhibited the expression of pBD1, pBD3, pEP2C, PG1-5, and PR39 (p < 0.05). NOD2, key regulator that is responsible for HDPs production, was markedly downregulated, whereas caspase-12 was activated in the presence of DON. In conclusion, DON induced caspase-12 activation and inhibited the NOD2-mediated HDPs production, which led to an impaired intestinal barrier integrity of weaned piglets. Our study provides a promising target for future therapeutic strategies to prevent the adverse effects of DON.


Assuntos
Mucosa Intestinal/efeitos dos fármacos , Peptídeos/genética , Tricotecenos/toxicidade , Animais , Caspase 12/metabolismo , Linhagem Celular , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Adaptadora de Sinalização NOD2/metabolismo , Permeabilidade/efeitos dos fármacos , RNA Mensageiro/metabolismo , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...