Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ying Yong Sheng Tai Xue Bao ; 30(10): 3336-3346, 2019 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-31621219

RESUMO

Carbon fluxes in a Haloxylon ammodendron plantation in the oasis-desert ecotone of Minqin was measured using an eddy covariance system. To provide scientific data for carbon source/sink assessment, we quantitatively analyzed the characteristics of CO2 flux and its driving factors in the growing season from May to October, 2018. The results showed that the trend of daily net carbon exchange in the growing season followed a symmetrical "U" shape curve. As to seasonality, bimodal curve was obvious. The plantation ecosystem was a carbon sink every month. The total carbon sequestrated was 34.38 g C·m-2, with the peak of 12.31 g C·m-2 in September and the lowest value of 0.89 g C·m-2 in July. The net carbon exchange in this ecosystem increased during the daytime with the increasing photosynthetically active radiation, consistent with the Michaelis-Menten rectangular hyperbola change. When the vapor pressure deficit was greater than 2.5 kPa, the increasing trend tended to flat. Ecosystem respiration increased exponentially with temperature, with temperature sensitivity being 1.7. Net carbon exchange in either day or night was significantly correlated with soil temperature through the whole growing season.


Assuntos
Carbono , Ecossistema , Ciclo do Carbono , Dióxido de Carbono , China , Estações do Ano
2.
Ying Yong Sheng Tai Xue Bao ; 29(7): 2339-2346, 2018 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-30039673

RESUMO

The stem sap flow rate of Haloxylon ammodendron plantation in the Minqin oasis-desert ectone was measured by the thermal dissipation probe (TDP). A cross-correlation analysis was used to estimate the time lag between the stem sap flow and the environmental factors influencing transpiration, including photosynthetically active radiation (PAR) and water vapor pressure deficit (VPD). The results showed that the stem sap flow rate of H. ammodendron had substantial seasonal variation, with the monthly average sap flow being the highest in June and the lowest in August. There was an obvious time lag between the stem sap flow of H. ammodendron and PAR and VPD. The stem sap flow was lagged behind PAR for 80 min but it was ahead of VPD for 114 min. Additionally, the time lag exhibited significant difference among different months during the growth season from May to September. The sap flow of H. ammodendron was more dependent on the variation of PAR on the daily scale than VPD, but it was more closely related to VPD during the day time. The time lag between the stem sap flow and PAR/VPD had no significant correlation with the tree factors (including plant height, ground diameter, diameter at 50 cm height, under branch height, canopy size) and the nocturnal sap flow.


Assuntos
Chenopodiaceae/fisiologia , Caules de Planta/fisiologia , China , Clima Desértico , Transpiração Vegetal , Estações do Ano , Árvores , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...