Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anim Biosci ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38938031

RESUMO

Objective: This trial was conducted to explore the impact of different wilting time of Italian ryegrass in the field on the dynamics in nutritional quality and fermentation of its silage. Methods: The harvested Italian ryegrass was directly wilted in the field for 0 day (W0), 1day (W1), 2 days (W2) and 3 days(W3), respectively, and tedded every 6 hours. And the preserved Italian ryegrass was sampled at 1, 2, 3, 5, 10, 20, 30, and 45 days after ensiling and three replicates per treatment. Results: With the extension of wilting, the DM content and pH value of wilted IRG gradually increased (p<0.05). There was a downward trend in; NDF (neutral detergent fiber), ADF (acid detergent fiber) and HEM (hemicellulose) with the increase of wilting time, but only W2 and W3 were significantly different from W0 (p<0.05). CP (crude protein), IVDMD (in vitro dry matter digestibility), TDN (total digestible nutrients) and RFV (relative feed value) decreased significantly with the increase of wilting time (p<0.05), except for W1. After 45 days of ensiling, W1 had the highest CP, TDN, and the lowest ADF and NDF. During ensiling, the increase of acetic acid and the decrease of WSC in W0 and W1 were similar, but the accumulation rate of lactic acid in W0 was faster than that in W1, resulting in the lowest pH value in W0. After 5 days of ensiling, the ratio of lactic acid to acetic acid in W1 stabilized at around 3:1, while W0 kept changing. Conclusion: Italian ryegrass that wilted in the field for 1 day effectively improved the dynamic changes in CP, TDN, ADF and NDF and fermentation quality of silage. Therefore, in practice, W1 was more recommended in production of IRG silage.

2.
Anim Biosci ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38938040

RESUMO

Objective: In this study, we explored the effect of fruit and vegetable waste addition on the quality of corn stalk silage. Method: Corn stalks were ensiled 20 days after ear harvesting and mixed with fruit and vegetable waste (FVW) consisting of apple, orange, broccoli, and Chinese cabbage waste as 3% of fresh matter (FM). Fruit waste consisted of solid residue obtained after juicing, and vegetable waste was collected from farms and cut into small pieces (2-3cm). The materials were stored anaerobically in 20-L silo buckets and opened after 60 days of fermentation. Results: There were significant differences in dry matter (DM), acid detergent fiber (ADF), neutral detergent fiber (NDF), total digestible nutrient (TDN), and relative feed value (RFV) levels in FVW derived from all tested raw materials (P < 0.05). Corn stalk mixed with orange waste (CSOW) had the highest DM content (28.77%), lowest ADF and NDF content (47.78% and 26.62% of DM, respectively), and highest TDN and RFV content (69.21 and 133, respectively). After 60 days, there were significant differences in all chemical parameters examined (P < 0.05). Corn stalk mixed with broccoli waste (CSBW) had the lowest DM loss (2.23%), and the CSOW group had the lowest NDF and ADF content and highest in vitro DM digestibility. CSBW had the lowest pH and ammonia nitrogen content, but the highest lactic acid/acetic acid ratio among the treatment groups. CSOW had the highest lactic acid content (2.27% of DM). The microbial contents of each group differed only in lactic acid bacteria counts before and after ensiling, showing a slight increase (P > 0.05) and significant decreases in yeast and mold counts (P < 0.05) after ensiling. Conclusion: These findings confirmed that mixing various FVW materials, particularly orange waste, with corn stalks improved the nutritional value of silage. Adding broccoli waste resulted in better fermentation quality than the addition of other FVW materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...