Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 17971, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289437
2.
Sci Rep ; 12(1): 9247, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35654980

RESUMO

We derive an exact one-component equation of motion for the probability amplitude of a target time-dependent state, and use the equation to reformulate quantum dynamics and control for both closed and open systems. Using the one-component equation, we show that an unexpected time-dependent leakage-free path can be induced and we capture a necessary quantity in determining the effect of decoherence suppression. Our control protocol based on the nonperturbative leakage elimination operator provides a unified perspective connecting some subtle, popular, and important concepts of quantum control, such as dynamical decoupling, quantum Zeno effect, and adiabatic passage. The resultant one-component equation will promise significant advantages in both quantum dynamics and control.

3.
Sci Rep ; 12(1): 5058, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35322146

RESUMO

We present an interesting relationship between the orthogonality catastrophe (OC) and the quantum speed limit (QSL) for a spin chain with uniform nearest neighbour couplings perturbed by an impurity spin. We thoroughly study the catastrophic QSL that specifies a bound on the evolution time between the initial and final states and in this respect, link it to the emerging OC effect. It is found that the speed of state evolution subtle but fundamental, and the bound characterized by QSL shows the same behaviours as the OC effect in the thermodynamic limit. It allows us to reveal some universal properties, in particular finite temperature effects. Significantly, the threshold of temperature and system size is clearly demonstrated for the QSL under finite temperature.

4.
Entropy (Basel) ; 24(10)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37420426

RESUMO

We investigate the time-dependent behaviour of the energy current between a quantum spin chain and its surrounding non-Markovian and finite temperature baths, together with its relationship to the coherence dynamics of the system. To be specific, both the system and the baths are assumed to be initially in thermal equilibrium at temperature Ts and Tb, respectively. This model plays a fundamental role in study of quantum system evolution towards thermal equilibrium in an open system. The non-Markovian quantum state diffusion (NMQSD) equation approach is used to calculate the dynamics of the spin chain. The effects of non-Markovianity, temperature difference and system-bath interaction strength on the energy current and the corresponding coherence in cold and warm baths are analyzed, respectively. We show that the strong non-Markovianity, weak system-bath interaction and low temperature difference will help to maintain the system coherence and correspond to a weaker energy current. Interestingly, the warm baths destroy the coherence while the cold baths help to build coherence. Furthermore, the effects of the Dzyaloshinskii-Moriya (DM) interaction and the external magnetic field on the energy current and coherence are analyzed. Both energy current and coherence will change due to the increase of the system energy induced by the DM interaction and magnetic field. Significantly, the minimal coherence corresponds to the critical magnetic field which causes the first order phase transition.

5.
Trends Biochem Sci ; 46(10): 848-860, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34187722

RESUMO

Severe acute respiratory syndrome virus 2 (SARS-CoV-2) invades host cells by interacting with receptors/coreceptors, as well as with other cofactors, via its spike (S) protein that further mediates fusion between viral and cellular membranes. The host membrane protein, angiotensin-converting enzyme 2 (ACE2), is the major receptor for SARS-CoV-2 and is a crucial determinant for cross-species transmission. In addition, some auxiliary receptors and cofactors are also involved that expand the host/tissue tropism of SARS-CoV-2. After receptor engagement, specific proteases are required that cleave the S protein and trigger its fusogenic activity. Here we discuss the recent advances in understanding the molecular events during SARS-CoV-2 entry which will contribute to developing vaccines and therapeutics.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Ligação Proteica , Receptores Virais/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus
6.
Sci Rep ; 11(1): 4648, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33633332

RESUMO

We prove the existence of a unitary transformation that enables two arbitrarily given Hamiltonians in the same Hilbert space to be transformed into one another. The result is straightforward yet, for example, it lays the foundation to implementing or mimicking dynamics with the most controllable Hamiltonian. As a promising application, this existence theorem allows for a rapidly evolving realization of adiabatic quantum computation by transforming a Hamiltonian where dynamics is in the adiabatic regime into a rapidly evolving one. We illustrate the theorem with examples.

7.
Sci Rep ; 10(1): 6934, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32332877

RESUMO

The stationary behavior of a quantum system is determined by its Hamiltonian and its boundary conditions. All quantum phase transitions (QPT) reported previously were induced by changing the Hamiltonian. In a circular spin model with Heisenberg XY interactions and no magnetic field, we observe an anomaly in quantum phases caused by a qualitative change of the boundary condition. The unexpected anomaly features an infinite number of single-particle levels, in the same pattern as the single-photon-triggered quantum phase transition in the Rabi model.

8.
Proc Natl Acad Sci U S A ; 116(38): 18928-18936, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31467167

RESUMO

Prokaryotes possess CRISPR-Cas systems to exclude parasitic predators, such as phages and mobile genetic elements (MGEs). These predators, in turn, encode anti-CRISPR (Acr) proteins to evade the CRISPR-Cas immunity. Recently, AcrVA4, an Acr protein inhibiting the CRISPR-Cas12a system, was shown to diminish Lachnospiraceae bacterium Cas12a (LbCas12a)-mediated genome editing in human cells, but the underlying mechanisms remain elusive. Here we report the cryo-EM structures of AcrVA4 bound to CRISPR RNA (crRNA)-loaded LbCas12a and found AcrVA4 could inhibit LbCas12a at several stages of the CRISPR-Cas working pathway, different from other characterized type I/II Acr inhibitors which target only 1 stage. First, it locks the conformation of the LbCas12a-crRNA complex to prevent target DNA-crRNA hybridization. Second, it interacts with the LbCas12a-crRNA-dsDNA complex to release the bound DNA before cleavage. Third, AcrVA4 binds the postcleavage LbCas12a complex to possibly block enzyme recycling. These findings highlight the multifunctionality of AcrVA4 and provide clues for developing regulatory genome-editing tools.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/antagonistas & inibidores , Proteínas Associadas a CRISPR/metabolismo , Endodesoxirribonucleases/antagonistas & inibidores , Endodesoxirribonucleases/metabolismo , Inibidores Enzimáticos/metabolismo , Proteínas de Bactérias/química , Proteínas Associadas a CRISPR/química , Microscopia Crioeletrônica , DNA/metabolismo , Endodesoxirribonucleases/química , Inibidores Enzimáticos/química , Edição de Genes , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Multimerização Proteica , RNA Guia de Cinetoplastídeos/metabolismo
9.
Sci Rep ; 9(1): 11035, 2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31363136

RESUMO

Leakage errors damage a qubit by coupling it to other levels. Over the years, several theoretical approaches to dealing with such errors have been developed based on perturbation arguments. Here we propose a different strategy: we use a sequence of finite rotation gates to exactly eliminate leakage errors. The strategy is illustrated by the recently proposed charge quadrupole qubit in a triple quantum dot, where there are two logical states to encode the qubit and one leakage state. We found an su(2) subalgebra in the three-level system, and by using the subalgebra we show that ideal Pauli x and z rotations, which are universal for single-qubit gates, can be generated by two or three propagators. In addition, the magnitude of detuning fluctuation can be estimated based on the exact solution.

10.
Sci Rep ; 8(1): 1471, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29367640

RESUMO

In spin-based nanosystems for quantum information processing, electron spin qubits are subject to decoherence due to their interactions with nuclear spin environments. In this paper, we present an exact master equation for a central spin-1/2 system in time-dependent external fields and coupled to a spin-half bath in terms of hyperfine interaction. The master equation provides a unified description for free and controlled dynamics of the central spin and is formally independent of the details and size of spin environments. Different from the previous approaches, the master equation remains exact even in the presence of external control fields. Using the parameters for realistic nanosystems with nonzero nuclear spins, such as GaAs, we investigate the Overhauser's effect on the decoherence dynamics of the central spin under different distributions of bath-spin frequencies and system-bath coupling strengths. Furthermore, we apply the leakage elimination operator, in a nonperturbative manner, to this system to suppress the decoherence induced by hyperfine interaction.

11.
Sci Rep ; 7(1): 6254, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28740187

RESUMO

Dark state as a consequence of interference between different quantum states has great importance in the fields of chip-scale atomic clock and quantum information. For the Λ-type three-level system, this dark state is generally regarded as being dissipation-free because it is a superposition of two lowest states without dipole transition between them. However, previous studies are based on the rotating-wave approximation (RWA) by neglecting the counter-rotating terms in the system-environment interaction. In this work, we study non-Markovian quantum dynamics of the dark state in a Λ-type three-level system coupled to two bosonic baths and reveal the effect of counter-rotating terms on the dark state. In contrast to the dark state within the RWA, leakage of the dark state occurs even at zero temperature, as a result of these counter-rotating terms. Also, we present a method to restore the quantum coherence of the dark state by applying a leakage elimination operator to the system.

13.
Sci Rep ; 7(1): 176, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28282969

RESUMO

We prove a general theorem that the action of arbitrary classical noise or random unitary channels can not increase the maximum population of any eigenstate of an open quantum system, assuming initial system-environment factorization. Such factorization is the conventional starting point for descriptions of open system dynamics. In particular, our theorem implies that a system can not be ideally cooled down unless it is initially prepared as a pure state. The resultant inequality rigorously constrains the possibility of cooling the system solely through temporal manipulation, i.e., dynamical control over the system Hamiltonian without resorting to measurement based cooling methods. It is a substantial generalization of the no-go theorem claiming that the exact ground state cooling is forbidden given initial system-thermal bath factorization, while here we prove even cooling is impossible under classical noise.


Assuntos
Modelos Teóricos , Algoritmos , Temperatura Baixa , Transição de Fase , Teoria Quântica
14.
Sci Rep ; 6: 38149, 2016 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-27901118

RESUMO

Quantum physics dictates fundamental speed limits during time evolution. We present a quantum speed limit governing the generation of nonclassicality and the mutual incompatibility of two states connected by time evolution. This result is used to characterize the timescale required to generate a given amount of quantumness under an arbitrary physical process. The bound is found to be tight under pure dephasing dynamics. More generally, our analysis reveals the dependence on the initial and final states and non-Markovian effects.

15.
Sci Rep ; 6: 37781, 2016 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-27886234

RESUMO

Holonomic quantum computation (HQC) may not show its full potential in quantum speedup due to the prerequisite of a long coherent runtime imposed by the adiabatic condition. Here we show that the conventional HQC can be dramatically accelerated by using external control fields, of which the effectiveness is exclusively determined by the integral of the control fields in the time domain. This control scheme can be realized with net zero energy cost and it is fault-tolerant against fluctuation and noise, significantly relaxing the experimental constraints. We demonstrate how to realize the scheme via decoherence-free subspaces. In this way we unify quantum robustness merits of this fault-tolerant control scheme, the conventional HQC and decoherence-free subspace, and propose an expedited holonomic quantum computation protocol.

16.
Sci Rep ; 6: 22423, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26927477

RESUMO

Experiments indicate that the ground state of graphene in a strong magnetic field exhibits spontaneous breaking of SU(4) symmetry. However, the nature of the corresponding emergent state is unclear because existing theoretical methods approximate the broken-symmetry solutions, yielding nearly-degenerate candidate ground states having different emergent orders. Resolving this ambiguity in the nature of the strong-field ground state is highly desirable, given the importance of graphene for both fundamental physics and technical applications. We have discovered a new SO(8) symmetry that recovers standard graphene SU(4) quantum Hall physics, but predicts two new broken-SU(4) phases and new properties for potential ground states. Our solutions are analytical; thus we capture the essential physics of spontaneously-broken SU(4) states in a powerful yet solvable model useful both in correlating existing data and in suggesting new experiments.

17.
Sci Rep ; 6: 22307, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26923834

RESUMO

An adiabatic quantum algorithm may lose quantumness such as quantum coherence entirely in its long runtime, and consequently the expected quantum speedup of the algorithm does not show up. Here we present a general ultrafast adiabatic quantum algorithm. We show that by applying a sequence of fast random or regular signals during evolution, the runtime can be reduced substantially, whereas advantages of the adiabatic algorithm remain intact. We also propose a randomized Trotter formula and show that the driving Hamiltonian and the proposed sequence of fast signals can be implemented simultaneously. We illustrate the algorithm by solving the NP-complete 3-bit exact cover problem (EC3), where NP stands for nondeterministic polynomial time, and put forward an approach to implementing the problem with trapped ions.

18.
Sci Rep ; 5: 15332, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26478230

RESUMO

Relying on an exact time evolution scheme, we identify a novel transient energy transfer phenomenon in an exactly-solvable quantum microscopic model consisting of a three-level system coupled to two non-Markovian zero-temperature bosonic baths through two separable quantum channels. The dynamics of this model can be solved exactly using the quantum-state-diffusion equation formalism, demonstrating finite intervals of unidirectional energy flow across the system, typically, from the non-Markovian environment towards the more Markovian bath. Furthermore, when introducing a spatial asymmetry into the system, an analogue of the rectification effect is realized. In the long time limit, the dynamics arrives at a stationary state and the effects recede. Understanding temporal characteristics of directional energy flow will aid in designing microscopic energy transfer devices.

19.
Phys Rev Lett ; 114(19): 190502, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26024156

RESUMO

Dynamical decoupling operations have been shown to reduce errors in quantum information processing. Leakage from an encoded subspace to the rest of the system space is a particularly serious problem for which leakage elimination operators (LEOs) were introduced. Here we provide an analysis of nonideal pulses, rather than the well-understood idealization or bang-bang controls. Under realistic conditions, we show that these controls will provide the same protection from errors as idealized controls. Our work indicates that the effectiveness of LEOs depends on the integral of the pulse sequence in the time domain, which has been missing because of the idealization of pulse sequences. Our results are applied to a three-level system for the nitrogen-vacancy centers under an external magnetic field and are illustrated by the fidelity dynamics of LEO sequences, ranging from regular rectangular pulses, random pulses, and even disordered (noisy) pulses.

20.
Sci Rep ; 4: 6377, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-25231796

RESUMO

A realistic quantum many-body system, characterized by a generic microscopic Hamiltonian, is accessible only through approximation methods. The mean field theories, as the simplest practices of approximation methods, commonly serve as a powerful tool, but unfortunately often violate the symmetry of the Hamiltonian. The conventional BCS theory, as an excellent mean field approach, violates the particle number conservation and completely erases quantumness characterized by concurrence and quantum discord between different modes. We restore the symmetry by using the projected BCS theory and the exact numerical solution and find that the lost quantumness is synchronously reestablished. We show that while entanglement remains unchanged with the particle numbers, quantum discord behaves as an extensive quantity with respect to the system size. Surprisingly, discord is hardly dependent on the interaction strengths. The new feature of discord offers promising applications in modern quantum technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...