Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 935: 173371, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38772486

RESUMO

Abundant naturally and anthropogenically exposed surrounding rocks (NESRs and AESRs) in mining areas may pose persistent threats as sources of potentially toxic elements (PTEs), but this has been historically overlooked, especially for thallium (Tl) and arsenic (As). Here, the release risks of Tl and As from both NESRs and AESRs in a typical TlAs sulfide mining area were investigated. In a single leaching process, AESRs released 10.4 % of total Tl (157 µg L-1) and 32.5 % of total As (4089 µg L-1), 2-3 orders of magnitude higher than NESRs. Prolonged multiple leaching tests revealed notable and long-term risks of release of Tl and As from AESRs, associated with oxidation and dissolution of iron/sulfur-bearing minerals. Substantial release of PTEs was linked to the transformation/degradation of the -OH functional group and extensive dissolution of secondary sulfate minerals in AESRs. Ultrafiltration and STEM-EDS indicate that 18.4 % of water-extracted As released from AESRs existed as natural nanoparticles consisting of iron/sulfur-bearing minerals. This study highlights the high risks of Tl and As release from anthropogenically exposed surrounding rocks and the importance of nanoparticles in PTE transport, and provides insights into the control of PTEs in mining areas.

2.
J Hazard Mater ; 472: 134517, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38739960

RESUMO

Cadmium (Cd) is a heavy metal pollutant mainly originating from the discharge of industrial sewage, irrigation with contaminated water, and the use of fertilizers. The phytoremediation of Cd polluted soil depends on the identification of the associated genes in hyperaccumulators. Here, a novel Cd tolerance gene (SpCTP3) was identified in hyperaccumulator Sedum plumbizincicola. The results of Cd2+ binding and thermodynamic analyses, revealed the CXXC motif in SpCTP3 functions is a Cd2+ binding site. A mutated CXXC motif decreased binding to Cd by 59.93%. The subcellular localization analysis suggested that SpCTP3 is primarily a cytoplasmic protein. Additionally, the SpCTP3-overexpressing (OE) plants were more tolerant to Cd and accumulated more Cd than wild-type Sedum alfredii (NHE-WT). The Cd concentrations in the cytoplasm of root and leaf cells were significantly higher (53.75% and 71.87%, respectively) in SpCTP3-OE plants than in NHE-WT. Furthermore, malic acid levels increased and decreased in SpCTP3-OE and SpCTP3-RNAi plants, respectively. Moreover, SpCTP3 interacted with malate dehydrogenase 1 (MDH1). Thus, SpCTP3 helps regulate the subcellular distribution of Cd and increases Cd accumulation when it is overexpressed in plants, ultimately Cd tolerance through its interaction with SpMDH1. This study provides new insights relevant to improving the Cd uptake by Sedum plumbizincicola.


Assuntos
Biodegradação Ambiental , Cádmio , Proteínas de Plantas , Sedum , Poluentes do Solo , Cádmio/toxicidade , Cádmio/metabolismo , Sedum/metabolismo , Sedum/genética , Sedum/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Malato Desidrogenase/metabolismo , Malato Desidrogenase/genética
3.
Environ Sci Pollut Res Int ; 31(16): 23790-23801, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38429592

RESUMO

Accurate prediction of cadmium (Cd) ecotoxicity to and accumulation in soil biota is important in soil health. However, very limited information on Cd ecotoxicity on naturally contaminated soils. Herein, we investigated soil Cd ecotoxicity using Folsomia candida, a standard single-species test animal, in 28 naturally Cd-contaminated soils, and the back-propagation neural network (BPNN) model was used to predict Cd ecotoxicity to and accumulation in F. candida. Soil total Cd and pH were the primary soil properties affecting Cd toxicity. However, soil pH was the main factor when the total Cd concentration was < 3 mg kg-1. Interestingly, correlation analysis and the K-spiked test confirmed nutrient potassium (K) was essential for Cd accumulation, highlighting the significance of studying K in Cd accumulation. The BPNN model showed greater prediction accuracy of collembolan survival rate (R2 = 0.797), reproduction inhibitory rate (R2 = 0.827), body Cd concentration (R2 = 0.961), and Cd bioaccumulation factor (R2 = 0.964) than multiple linear regression models. Then the developed BPNN model was used to predict Cd ecological risks in 57 soils in southern China. Compared to multiple linear regression models, the BPNN models can better identify high-risk regions. This study highlights the potential of BPNN as a novel and rapid tool for the evaluation and monitoring of Cd ecotoxicity in naturally contaminated soils.


Assuntos
Artrópodes , Poluentes do Solo , Animais , Cádmio/toxicidade , Cádmio/análise , Solo/química , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Redes Neurais de Computação , Reprodução
4.
Environ Pollut ; 346: 123704, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38442823

RESUMO

East Yunnan province in southwest China is a region with elevated natural abundance (high geological background levels) of Cd due to high metal (loid) contents in the soils. Enzyme activities are useful indicators of metal (loid) toxicity in contaminated soils and whether Cd inhibits enzyme activities in paddy soils in high geological background areas is of considerable public concern. A pot experiment combined with field investigation was conducted to assess the effects of Cd on six soil enzymes that are essential to the cycling of C, N, and P in soils. Inhibitory effects of Cd fractions on enzyme activities were assessed using ecological dose-response models. The impact of soil properties on the inhibition of sensitive soil enzymes by Cd were assessed using linear and structural equation models. Cadmium was enriched in the paddy soils with 72.2 % of soil samples from high geological background areas exceeding the Chinese threshold values (GB 15618-2018) of Cd. Enzyme responses to Cd contamination varied markedly with a negative response by catalase but a positive response by invertase. Urease, ß-glucosidase, and alkaline phosphatase activities were stimulated at low Cd concentrations and inhibited at high concentrations. The average inhibition ratios of ß-glucosidase, urease, and catalase in high Cd levels were 19.9, 38.9, and 51.9%, respectively. Ecological dose-response models indicate that catalase and urease were the most Cd-sensitive of the enzymes studied and were suitable indicators of soil quality in high geological background areas. Structural equation modeling (SEM) indicates that soil properties influenced sensitive enzymes through various pathways, indicating that soil properties were factors determining Cd inhibition of enzyme activities. This suggests that Cd concentrations and soil physicochemical properties under a range of environmental conditions should be considered in addressing soil Cd pollution.


Assuntos
Celulases , Oryza , Poluentes do Solo , Cádmio/análise , Solo/química , Catalase , Urease/metabolismo , Poluentes do Solo/análise , China , Oryza/metabolismo
5.
Ann Bot ; 133(4): 585-604, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38359907

RESUMO

BACKGROUND AND AIMS: Kalanchoideae is one of three subfamilies within Crassulaceae and contains four genera. Despite previous efforts, the phylogeny of Kalanchoideae remains inadequately resolved with persistent issues including low support, unstructured topologies and polytomies. This study aimed to address two central objectives: (1) resolving the pending phylogenetic questions within Kalanchoideae by using organelle-scale 'barcodes' (plastomes) and nuclear data; and (2) investigating interspecific diversity patterns among Kalanchoideae plastomes. METHODS: To explore the plastome evolution in Kalanchoideae, we newly sequenced 38 plastomes representing all four constituent genera (Adromischus, Cotyledon, Kalanchoe and Tylecodon). We performed comparative analyses of plastomic features, including GC and gene contents, gene distributions at the IR (inverted repeat) boundaries, nucleotide divergence, plastomic tRNA (pttRNA) structures and codon aversions. Additionally, phylogenetic inferences were inferred using both the plastomic dataset (79 genes) and nuclear dataset (1054 genes). KEY RESULTS: Significant heterogeneities were observed in plastome lengths among Kalanchoideae, strongly correlated with LSC (large single copy) lengths. Informative diversities existed in the gene content at SSC/IRa (small single copy/inverted repeat a), with unique patterns individually identified in Adromischus leucophyllus and one major Kalanchoe clade. The ycf1 gene was assessed as a shared hypervariable region among all four genera, containing nine lineage-specific indels. Three pttRNAs exhibited unique structures specific to Kalanchoideae and the genera Adromischus and Kalanchoe. Moreover, 24 coding sequences revealed a total of 41 lineage-specific unused codons across all four constituent genera. The phyloplastomic inferences clearly depicted internal branching patterns in Kalanchoideae. Most notably, by both plastid- and nuclear-based phylogenies, our research offers the first evidence that Kalanchoe section Eukalanchoe is not monophyletic. CONCLUSIONS: This study conducted comprehensive analyses on 38 newly reported Kalanchoideae plastomes. Importantly, our results not only reconstructed well-resolved phylogenies within Kalanchoideae, but also identified highly informative unique markers at the subfamily, genus and species levels. These findings significantly enhance our understanding of the evolutionary history of Kalanchoideae.


Assuntos
Crassulaceae , Filogenia , Crassulaceae/genética , Plastídeos/genética , Evolução Biológica , Evolução Molecular , Genomas de Plastídeos
6.
Ecotoxicol Environ Saf ; 269: 115739, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38016191

RESUMO

The root-associated microbiome assembly substantially promotes (hyper)accumulator plant growth and metal accumulation and is influenced by multiple factors, especially host species and environmental stress. Athyrium wardii (Hook.) is a phytostabilizer that grows in lead (Pb)-zinc (Zn) mine tailings and shows high root Pb accumulation. However, there remains little information on the assembly of the root-associated microbiome of A. wardii and its role in phytostabilization. A field study investigated the structural and functional variation in the root-associated bacterial microbiome of Athyrium wardii (Hook.) exposed to different levels of contamination in Pb-Zn mine tailings. The root compartment dominated the variation in the root-associated bacterial microbiome but the levels of contaminants showed less impact. Bacterial co-occurrence was enhanced in the rhizosphere soil and rhizoplane but tended to be much simpler in the endosphere in terms of network complexity and connectivity. This indicates that the microbial community assembly of A. wardii was non-random and shaped by root selective effects. Proteobacteria, Chloroflexi, Actinobacteria, Cyanobacteria, and Acidobacteriota were generally the dominant bacterial phyla. The genera Crossiella and Bradyrhizobium were enriched in the rhizosphere and cyanobacterial genera were enriched in the endosphere, demonstrating substantial advantages to plant survival and adaptation in the harsh mine environment. Functional categories involved in amino acid and carbohydrate metabolism were abundant in the rhizosphere soil, thus contributing to metal solubility and bioavailability in the rhizosphere. Membrane transporters, especially ATP-binding cassette transporters, were enriched in the endosphere, indicating a potential role in metal tolerance and transportation in A. wardii. The study shows substantial variation in the structure and function of microbiomes colonizing different compartments, with the rhizosphere and endophytic microbiota potentially involved in plant metal tolerance and accumulation during phytostabilization.


Assuntos
Microbiota , Traqueófitas , Chumbo/toxicidade , Chumbo/metabolismo , Plantas , Bactérias , Zinco/toxicidade , Zinco/metabolismo , Solo/química , Rizosfera , Raízes de Plantas/metabolismo , Microbiologia do Solo
7.
Int J Phytoremediation ; 26(2): 241-249, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37463004

RESUMO

Sedum plumbizincicola is a cadmium (Cd) and zinc hyperaccumulator that can activate Cd by rhizosphere acidification. However, there is little understanding of the Cd leaching risk from polluted soil during phytoextraction process. Here, pot and column experiments were conducted to monitor soil Cd leaching characteristics under different rainfall simulation conditions during S. plumbizincicola phytoextraction. Soil Cd leaching increased significantly with increasing simulated rainfall intensity. Compared with normal rainfall (NR), weak rainfall (WR) resulted in a 34.3% decrease in Cd uptake by S. plumbizincicola and also led to a 68.7% decline in Cd leaching. In contrast, Cd leaching under heavy rainfall (HR) was 2.12 times that of NR in the presence of S. plumbizincicola. After two successive growing periods, phytoextraction resulted in a 53.5-66.4% decline in the amount of soil Cd leached compared with controls in which S. plumbizincicola was absent. Even compared with maize cropping as a control, S. plumbizincicola did not instigate a significant increase in Cd leaching. The contribution of Cd leaching loss to the decline in soil total Cd concentration was negligible after phytoextraction in the pot experiment. Overall, the results contribute to our understanding of soil Cd leaching risk by phytoextraction with S. plumbizincicola.


Repeated phytoextraction by hyperaccumulator Sedum plumbizincicola is an important remediation technology to remove Cd from contaminated soils. At the same time, Sedum plumbizincicola can also activate soil Cd by rhizosphere acidification. However, studies on the leaching risk of soil activated Cd during the phytoextraction process are very few. This study looked at the effects of Sedum plumbizincicola growth on soil Cd leaching with the changes in rainfall simulation and plant type. Results showed that repeated phytoextraction with Sedum plumbizincicola did not increase Cd leaching from contaminated soil.


Assuntos
Sedum , Poluentes do Solo , Cádmio , Poluentes do Solo/análise , Biodegradação Ambiental , Solo
8.
J Hazard Mater ; 465: 133211, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38101008

RESUMO

Water-dispersible colloids (WDCs) are vital for trace element migration, but there is limited information about the abundance, size distribution and elemental composition of WDC-bound thallium (Tl) and arsenic (As) in mining-contaminated soils and sediments solutions. Here, we investigated the potential mobilization of WDC-bound Tl and As in soils and sediments in a typical Tl/As-contaminated area. Ultrafiltration results revealed on average > 60% of Tl and As in soil solution (< 220 nm) coexisted in colloidal form whereas Tl and As in sediment solution primarily existed in the truly dissolved state (< 10 kDa) due to increased acidity. Using AF4-UV-ICP-MS and STEM-EDS, we identified Fe-bearing WDCs in association with aluminosilicate minerals and organic matter were main carriers of Tl and As. SAED further verified jarosite nanoparticles were important components of soil WDC, directly participating in the migration of Tl and As. Notably, high pollution levels and solution pH promoted the release of Tl/As-containing WDCs. This study provides quantitative and visual insights into the distribution of Tl and As in WDC, highlighting the important roles of Fe-bearing WDC, soil solution pH and pollution level in the potential mobilization of Tl and As in contaminated soils and sediments.

9.
Huan Jing Ke Xue ; 44(9): 5196-5203, 2023 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-37699837

RESUMO

To explore the safe utilization technology of farmland polluted by the heavy metals cadmium (Cd) and lead (Pb) and to realize the safe production of agricultural products, a pot experiment was conducted to investigate the effects of two soil passivators and five foliar inhibitors on Cd and Cd-accumulation and quality of lettuce with low Pb and Cd accumulation (KCW). The results showed that different control measures had different effects on the soil pH value of lettuce, and the application of 45 g·m-2biochar-based passivator had the most significant difference in improving the soil pH value, which was increased by 0.8 units compared with that in CK. By using 72 g·m-2 of humic acid passivator yielded notable difference in reducing the soil pH value of lettuce. A reduction of 0.25 units was achieved compared with that in CK. Among all the control measures, the application of 45 g·m-2 biocharcoal-based passivation agent had the best effect on reducing soil available Cd content, which was significantly reduced by 53% compared with that in CK, and the application of 135 g·m-2biocharcoal-based passivation agent had the best effect on reducing soil available Pb content, which was significantly reduced by 64% compared with that in CK. Spraying 0.8% FAK-Zn foliar inhibitor not only had the best control effect on reducing Cd and Pb contents in the edible parts of lettuce, which were significantly reduced by 77% and 60%, respectively, compared with that in CK, but it also significantly reduced Cd and Pb enrichment coefficients and transport coefficients from the root to the edible parts of the lettuce. Different control measures had different effects on the nutritional quality of lettuce, and 0.4% FAK-Zn foliar inhibitor had the best effect on soluble protein. The 0.6% FAK-Zn had the best effect on soluble sugar, and the 0.4% FAK-Zn inhibitor had the best effect on vitamin C content. The application of biocarbon-based passivator could effectively repair lettuce soil polluted by Cd and Pb, whereas the application of FAK-Zn leaf surface inhibitor could effectively inhibit the accumulation, absorption, and transfer of Cd and Pb in lettuce; improve the nutritional quality of lettuce; provide a theoretical basis for safe production of vegetables polluted by heavy metals; and promote the recycling of resources and environment.


Assuntos
Cádmio , Lactuca , Chumbo , Verduras , Solo
10.
Sci Total Environ ; 905: 167216, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37734600

RESUMO

Phytoextraction with Sedum plumbizincicola is an in-situ, environmentally friendly and highly efficient remediation technique for slightly Cd-polluted soils but it remains a challenge to remediate highly Cd-polluted soils under field conditions. Here, an 8-ha field experiment was conducted to evaluate the feasibility of repeated phytoextraction by S. plumbizincicola of a highly Cd-polluted acid agricultural soil (pH 5.61, [Cd] 2.58 mg kg-1) in Yunnan province, southwest China. Mean shoot dry biomass production, Cd concentration and Cd uptake were 1.95 t ha-1, 170 mg kg-1 and 339 g ha-1 at the first harvest, and 0.91 t ha-1, 172 mg kg-1 and 142 g ha-1 at the second harvest. After two seasons of phytoextraction, soil total and CaCl2-extractable Cd concentrations decreased from 2.58 ± 0.69 to 1.53 ± 0.43 mg kg-1 and 0.22 ± 0.12 to 0.14 ± 0.07 mg kg-1, respectively. Stepwise multiple linear regression analysis shows that the shoot Cd concentration and uptake of S. plumbizincicola were positively related to soil CaCl2-extractable Cd concentrations, especially in the first crop. A negative relationship indicates that soil organic matter content played an important role in soil Cd availability and shoot Cd concentration in the first crop. In addition, the rhizosphere effect on soil CaCl2-extractable Cd concentration was negatively correlated with soil pH in the first crop. The accuracy of the calculation of soil Cd phytoextraction efficiency at field scale depends on all of the following factors being considered: shoot Cd uptake, cropping pattern, standardized sampling points, and the leaching and surface runoff of Cd. Phytoextraction with S. plumbizincicola is a feasible technique for efficient Cd removal from highly polluted soils and wide variation in soil properties can influence phytoextraction efficiency at the field scale.


Assuntos
Sedum , Poluentes do Solo , Cádmio/análise , Zinco/análise , Sedum/química , Cloreto de Cálcio , Poluentes do Solo/análise , Biodegradação Ambiental , China , Solo/química
11.
Environ Sci Technol ; 57(26): 9843-9853, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37342885

RESUMO

The association of arsenic (As) with colloidal particles could facilitate its transport to adjacent water systems or alter its availability in soil-rice systems. However, little is known about the size distribution and composition of particle-bound As in paddy soils, particularly under changing redox conditions. Here, we incubated four As-contaminated paddy soils with distinctive geochemical properties to study the mobilization of particle-bound As during soil reduction and subsequent reoxidation. Using transmission electron microscopy-energy dispersive spectroscopy and asymmetric flow field-flow fractionation, we identified organic matter (OM)-stabilized colloidal Fe, most likely in the form of (oxy)hydroxide-clay composite, as the main arsenic carriers. Specifically, colloidal As was mainly associated with two size fractions of 0.3-40 and >130 kDa. Soil reduction facilitated the release of As from both fractions, whereas reoxidation caused their rapid sedimentation, coinciding with solution Fe variations. Further quantitative analysis demonstrated that As concentrations positively correlated with both Fe and OM concentrations at nanometric scales (0.3-40 kDa) in all studied soils during reduction and reoxidation, yet the correlations are pH-dependent. This study provides a quantitative and size-resolved understanding of particle-bound As in paddy soils, highlighting the importance of nanometric Fe-OM-As interactions in paddy As geochemical cycling.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Arsênio/química , Poluição Ambiental/análise , Solo/química , Coloides/metabolismo
12.
Sci Total Environ ; 881: 163405, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37044330

RESUMO

Soil metal(loid)s in high geological background areas occur mainly in the residual form with low bioavailability, and whether these potentially toxic elements (PTEs) in agricultural soils are harmful to human health is of considerable public concern. A paired survey using both soil and crop samples was conducted using 437 contaminated sites in east Yunnan province, southwest China. The concentration, distribution, and source of PTEs (arsenic (As), copper (Cu), zinc (Zn), lead (Pb), cadmium (Cd), and chromium (Cr)) in agricultural soils, and the contamination levels of and potential health risks from PTEs from different pollution sources were evaluated. Soil Pb, Cu, Zn, Cd, Cr, and As concentrations were higher than the Chinese screening values (GB 15618-2018) of 10.98, 36.16, 24.71, 86.96, 14.19, and 6.64 %, respectively, and Cd greatly exceeded the screening values. Spatial distribution maps indicate that areas with high concentrations of Pb, Cu, Cd, and As were located mainly in mining areas. However, the Zn and Cr concentrations were relatively homogeneous and more dependent on natural processes. The source identification of PTEs shows that Zn and Cr in soils were controlled mainly by the geological background, Pb and As were closely related to anthropogenic activities, and Cu and Cd were related to both sources. Different pollution sources affected crop PTE contents, with average concentrations of Zn, Cd, Cr, and As in high geological background areas significantly lower than in anthropogenic activity areas (p < 0.001), while Cu and As did not differ significantly. Although soil PTEs in high geological background areas represent a relatively high potential risk, they had little impact on crop quality. The hazard indices of different crop products for adults and children followed the sequence: cereals > leafy vegetables > rootstalk vegetables > fruit vegetables. Rootstalk and fruit vegetables are recommended to be grown in the study areas because they are safe for human consumption.


Assuntos
Arsênio , Metais Pesados , Poluentes do Solo , Adulto , Criança , Humanos , Metais Pesados/análise , Solo , Cádmio , Chumbo , Monitoramento Ambiental , Poluentes do Solo/análise , China , Arsênio/análise , Zinco , Verduras , Cromo , Medição de Risco
13.
Environ Sci Technol ; 57(14): 5891-5902, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36988089

RESUMO

This study employs stable isotope analysis to investigate the mechanisms of cadmium (Cd) and zinc (Zn) interaction in the metal hyperaccumulating plant species Sedum plumbizincicola. To this end, the Cd and Zn isotope compositions of root, stem, leaf, and xylem sap samples were determined during metal uptake and translocation at different Cd and Zn concentrations. The enrichment of light isotopes of both elements in plants during uptake was less pronounced at low metal supply levels, likely reflecting the switch from a low-affinity to a high-affinity transport system at lower levels of external metal supply. The lower δ114/110Cd values of xylem sap when treated with a metabolic inhibitor decreasing the active Cd uptake further supports the preference of heavier Cd isotopes during high-affinity transport. The Δ66Znplant-initial solution or Δ66Znplant-final solution values were similar at different Cd concentrations, indicating negligible interaction of Cd in the Zn uptake process. However, decreasing Zn supply levels significantly increased the enrichment of light Cd isotopes in plants (Δ114/110Cd = -0.08‰) in low-Cd treatments but reduced the enrichment of light Cd isotopes in plants (Δ114/110Cd = 0.08‰) under high Cd conditions. A systematic enrichment of heavy Cd and light Zn isotopes was found in root-to-shoot translocation of the metals. The Cd concentrations of the growth solutions thereby had no significant impact on Zn isotope fractionation during root-to-shoot translocation. However, the Δ114/110Cdtranslocation values hint at possible competition between Cd and Zn for transporters during root-to-shoot transfer and this may impact the transport pathway of Cd. The stable isotope data demonstrate that the interactions between the two metals influenced the uptake and transport mechanisms of Cd in S. plumbizincicola but had little effect on those of Zn.


Assuntos
Cádmio , Sedum , Poluentes do Solo , Solo , Biodegradação Ambiental , Cádmio/análise , Cádmio/metabolismo , Isótopos/análise , Isótopos/metabolismo , Isótopos/farmacologia , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Sedum/metabolismo , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Zinco/análise , Isótopos de Zinco/análise , Isótopos de Zinco/metabolismo , Isótopos de Zinco/farmacologia
14.
Environ Sci Pollut Res Int ; 30(16): 47182-47208, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36732457

RESUMO

Soil pollution represents a threat to soil biodiversity and to soil and human health. However, many ecotoxicological issues, such as the impact of heavy metal pollution on the soil mite community and its spatial distribution in areas with complex environmental factors, are not fully understood. Here, an investigation was conducted in an arable area (about 11 km2) enclosed by surrounding mountains. The study area was contaminated with potentially toxic metals derived from copper smelting that was functioning for over 10 years. The area comprised four land use types: woodlands, dry fields, paddy fields, and wastelands, and was divided into 141 study sites each with an area of 6.25 ha. The soil metal (Cu, Zn, Pb, and Cd) contents, pH, and organic matter were determined and their distributions were established. Furthermore, soil mite (Acari) community properties (species richness, individual abundance, and Shannon-Wiener diversity index) were determined, and the distributions of total species number and abundance were ascertained. Soil metal pollution strongly reduced soil mite community, but the effects depended on mite groups or species and their sensitivity to different metals as well as land use types. CANOCO analysis revealed that the order Oribatida was more highly correlated with soil metal contents, whereas the other three orders responded to soil metal contents depending on land use types, mite properties, or metals. SADIE method indicated that the coordinate relationship between mite species number and metal concentration was more negative (4-25% of the study sites) than positive (4-12%). The metal pollution levels in the soil were evaluated by single and integrated pollution and ecological risk indices.


Assuntos
Metais Pesados , Ácaros , Poluentes do Solo , Animais , Humanos , Solo/química , Monitoramento Ambiental/métodos , Poluentes do Solo/análise , Metais Pesados/análise , Poluição Ambiental/análise , China , Medição de Risco
15.
Sci Total Environ ; 869: 161774, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36708830

RESUMO

Identification of potential toxic element (PTE) sources and their specific human health risk is critical to the management of PTEs in soils. In this study, multi-medium were collected from a mercury­thallium polymetallic mining area in Southwestern China. Hg isotope technique together with positive matrix factorization (PMF) model was used to identify PTE sources and assess their source-oriented health risk. Results showed that among the studied PTEs, this study area presented high pollution of Hg, Tl and As, with higher concentrations than their corresponding background values of Guizhou province, yet their average concentrations in covering soils were significantly lower than those in the natural soils. The Tl in coix grains should also be paid more attention due to its high concentration. Both natural and covering soils had different Hg isotope composition with tailings, while sediments have similar Hg isotope fractionation with covering soils. According to the PMF model, three sources in both natural and covering soils were apportioned and Hg, Tl and As were mainly influenced by the historical mining activities, which also confirmed by their Hg isotope signatures. The contributions of historical mining activities accounted for 40 % and 20 % of the PTEs in natural and covering soils, respectively. The assessment of source-specific health risks suggested that the non-carcinogenic risk of Hg, Tl and As was much higher than other elements. Historical mining activities were regarded as the major contributor to health risks (79 % and 76 % for natural soils and 50 % and 59 % for covering soils, respectively). This indicated that the restoration of coveing soils indeed decreased the health risk in this study area. These findings thus highlight the importance of ongoing monitoring of covering soils in the polymetallic mining area, which is imperative for preferably assessing the health risk of PTEs in similar mining area worldwide.


Assuntos
Mercúrio , Metais Pesados , Poluentes do Solo , Humanos , Mercúrio/análise , Tálio , Isótopos de Mercúrio , Solo , Monitoramento Ambiental/métodos , Poluentes do Solo/análise , China , Medição de Risco , Metais Pesados/análise
16.
Sci Total Environ ; 863: 160917, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36529394

RESUMO

Microbial communities are closely related to plant performance and numerous studies have shown their involvement with the growth and development of host plants, resistance to pathogen invasion and adaptation to environmental stress. Here we described in detail the ecological process of the microbial community assembly in hyperaccumulator plant Sedum plumbizincicola. We divided the microbiota into four ecological compartments (bulk soil, rhizosphere, root endosphere and aboveground endosphere). The results showed that host selection strongly controlled the aggregation of microbial community. So that microbes occupied different niches from the bulk soil to the aboveground endosphere, and bacterial diversity and network complexity decreased gradually. Soil types were the second influencing factor, especially for the microbial community in the root endosphere. The SourceTracker analysis further confirmed the vertical migration of microbes from bulk soil to aboveground endosphere. In addition, under the condition of heavy metal pollution, the microbial community of S. plumbizincicola tended to form a microbial pool dominated by Proteobacteria and Actinobacteria. Ellin6067, Sphingomonas, Ralstonia, SC-I-84_uncultured bacterium, Burkholderiaceae_Undibacterium and Pedosphaeraceae_uncultured bacterium etc. were identified as the vital biomarker taxa. Among these genera, the relative abundance of last three was significantly positively correlated with the activation and transfer of cadmium, and they mainly enriched in paddy soil. This study provides evidence for the mechanism by which the microbial community assembly occurs and experience for regulating the microbial community and increasing the accumulation efficiency of potentially toxic metals in S. plumbizincicola.


Assuntos
Microbiota , Sedum , Poluentes do Solo , Cádmio/análise , Solo , Biodegradação Ambiental , Poluentes do Solo/análise , Bactérias , Plantas , Raízes de Plantas/microbiologia
17.
Environ Sci Pollut Res Int ; 30(7): 19495-19512, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36239890

RESUMO

Hyperspectral techniques are promising alternatives to traditional methods of investigating potentially toxic metal(loid) contamination. In this study, hyperspectral technology combined with partial least squares regression (PLSR) and extreme learning machine (ELM) established estimation models to predict the contents of copper (Cu), zinc (Zn), arsenic (As), cadmium (Cd), lead (Pb) and tin (Sn) in multi-media environments (mine tailings, soils and sediments) surrounding abandoned mineral processing plants in a typical tin-polymetallic mineral agglomeration in Guangxi Autonomous Region. Four spectral preprocessing methods, Savitzky-Golay (SG) smoothing, continuum removal (CR), first derivative (FD) and continuous wavelet transform (CWT), were used to eliminate noise and highlight spectral features. The optimum combinations of spectral preprocessing and machine learning algorithms were explored, then the estimation models with best accuracy were obtained. CWT and CR were excellent spectral pretreatments for the hyperspectral data regardless of the applied algorithms. The coefficients of determination (R2) of estimation models for the best accuracy of various metals (loid) are as follows: Cu (CWT-ELM:0.85), Zn (CR-PLSR:0.93), As (CWT-ELM: 0.86), Cd (CR-PLSR: 0.89), Pb (CWT-PLSR: 0.75) and Sn (CR-ELM: 0.81). In contrast, ELM models had higher accuracy with R2 > 0.80 (except Cd and Pb). In conclusion, ELM-based spectral estimation models are able to predict metal (loid) concentrations with high accuracy and efficiency, providing a potential new combinatorial approach for estimating toxic metal contamination in multi-media environments.


Assuntos
Arsênio , Metais Pesados , Arsênio/análise , Cádmio , China , Chumbo , Metais Pesados/análise , Minerais , Tecnologia , Estanho
18.
Sci Total Environ ; 855: 159023, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36167126

RESUMO

Microplastic pollution is an issue of major environmental concern worldwide. Land-use type may affect the abundance, polymer types, and distribution characteristics of soil microplastics but their distribution remains unknown on the coastal plain of east China. Here, the abundance of microplastics in farmland (FL), plantation (P), and orchard/secondary forest (OSF) soils was determined on the east China coastal plain, and characteristics of the microplastics (shape, size, colour, and polymer composition) were analysed in soil samples collected from 33 sites. The average abundances of microplastics in FL, P, and OSF soils on the coastal plain of the east China coast were 185, 109, and 150 items kg-1, respectively. Small particles, fibres and transparent particles were the main characteristics of the microplastics observed. The polymer types were mainly PP and PET. The abundance of microplastics in farmland was positively correlated with population density in the study area. Therefore, agricultural activities associated with high population density are the main factors leading to the high abundance of microplastics in farmland soil.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos/análise , Solo , Monitoramento Ambiental , Poluentes Químicos da Água/análise , China
19.
Biology (Basel) ; 11(12)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36552287

RESUMO

The genus Crassula is the second-largest genus in the family Crassulaceae, with about 200 species. As an acknowledged super-barcode, plastomes have been extensively utilized for plant evolutionary studies. Here, we first report 10 new plastomes of Crassula. We further focused on the structural characterizations, codon usage, aversion patterns, and evolutionary rates of plastomes. The IR junction patterns-IRb had 110 bp expansion to rps19-were conservative among Crassula species. Interestingly, we found the codon usage patterns of matK gene in Crassula species are unique among Crassulaceae species with elevated ENC values. Furthermore, subgenus Crassula species have specific GC-biases in the matK gene. In addition, the codon aversion motifs from matK, pafI, and rpl22 contained phylogenetic implications within Crassula. The evolutionary rates analyses indicated all plastid genes of Crassulaceae were under the purifying selection. Among plastid genes, ycf1 and ycf2 were the most rapidly evolving genes, whereas psaC was the most conserved gene. Additionally, our phylogenetic analyses strongly supported that Crassula is sister to all other Crassulaceae species. Our findings will be useful for further evolutionary studies within the Crassula and Crassulaceae.

20.
Plants (Basel) ; 11(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36559654

RESUMO

As representative of the early-divergent groups of angiosperms, Saxifragales is extremely divergent in morphology, comprising 15 families. Within this order, our previous case studies observed significant structural diversities among the plastomes of several lineages, suggesting a possible role in elucidating their deep phylogenetic relationships. Here, we collected 208 available plastomes from 11 constituent families to explore the evolutionary patterns among Saxifragales. With thorough comparisons, the losses of two genes and three introns were found in several groups. Notably, 432 indel events have been observed from the introns of all 17 plastomic intron-containing genes, which could well play an important role in family barcoding. Moreover, numerous heterogeneities and strong intrafamilial phylogenetic implications were revealed in pttRNA (plastomic tRNA) structures, and the unique structural patterns were also determined for five families. Most importantly, based on the well-supported phylogenetic trees, evident phylogenetic signals were detected in combinations with the identified pttRNAs features and intron indels, demonstrating abundant lineage-specific characteristics for Saxifragales. Collectively, the results reported here could not only provide a deeper understanding into the evolutionary patterns of Saxifragales, but also provide a case study for exploring the plastome evolution at a high taxonomic level of angiosperms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...