Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Healthc Eng ; 2017: 3850351, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29075428

RESUMO

Standing up from a seated position is a common activity in people's daily life. However, for transfemoral (i.e., above-knee) amputees fitted with traditional passive prostheses, the sit-to-stand (STS) transition is highly challenging, due to the inability of the prosthetic joints in generating torque and power output. In this paper, the authors present a new STS control approach for powered lower limb prostheses, which is able to regulate the power delivery of the prosthetic knee joint to obtain natural STS motion similar to that displayed by healthy subjects. Mimicking the dynamic behavior of the knee in the STS, a unified control structure provides the desired control actions by combining an impedance function with a time-based ramp-up function. The former provides the gradual energy release behavior desired in the rising phase, while the latter provides the gradual energy injection behavior desired in the loading phase. This simple and intuitive control structure automates the transition between the two phases, eliminating the need for explicit phase transition and facilitating the implementation in powered prostheses. Human testing results demonstrated that this new control approach is able to generate a natural standing-up motion, which is well coordinated with the user's healthy-side motion in the STS process.


Assuntos
Amputados , Membros Artificiais , Prótese do Joelho , Movimento , Desenho de Prótese , Fenômenos Biomecânicos , Biomimética , Humanos , Masculino , Adulto Jovem
3.
J Dyn Syst Meas Control ; 138(8): 0810111-8101110, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27354755

RESUMO

Inspired by human motor control theory, stiffness control is highly effective in manipulation and human-interactive tasks. The implementation of stiffness control in robotic systems, however, has largely been limited to closed-loop control, and suffers from multiple issues such as limited frequency range, potential instability, and lack of contribution to energy efficiency. Variable-stiffness actuator represents a better solution, but the current designs are complex, heavy, and bulky. The approach in this paper seeks to address these issues by using pneumatic actuator as a variable series elastic actuator (VSEA), leveraging the compressibility of the working fluid. In this work, a pneumatic actuator is modeled as an elastic element with controllable stiffness and equilibrium point, both of which are functions of air masses in the two chambers. As such, for the implementation of stiffness control in a robotic system, the desired stiffness/equilibrium point can be converted to the desired chamber air masses, and a predictive pressure control approach is developed to control the timing of valve switching to obtain the desired air mass while minimizing control action. Experimental results showed that the new approach in this paper requires less expensive hardware (on-off valve instead of proportional valve), causes less control action in implementation, and provides good control performance by leveraging the inherent dynamics of the actuator.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...