Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small Methods ; 7(10): e2300396, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37365960

RESUMO

To extract the fuzzy contour features, tiny depth features of surface microcracks in the Si3 N4 ceramic bearings roller. An adaptive nano feature extraction and multiscale deep fusion coupling method is proposed, to sufficiently reconstruct the three-dimensional morphology characteristics of surface microcracks. Construct an adaptive nano feature extraction method, form the surface microcrack image scale space and the Gaussian difference pyramid function equation, realize the detection and matching of global feature points. The sparse point cloud is obtained. Through polar-line correction, depth estimation, and fusion of feature points on the surface microcracks image, a multiscale depth fusion matching cost pixel function is established to realize a dense point cloud reconstruction of surface microcracks. The reconstruction results show that the highest value of the local convex surface reconstructed by the dense point cloud reaches 1183 nm, and the lowest local concave surface is accurate to 296 nm. Compared with the measurement results of the confocal platform, the relative error of the reconstruction result is 24.6%. The overall feature-matching rate of the reconstruction reaches 93.3%. It provides a theoretical basis for the study of surface microcrack propagation mechanism and the prediction of bearing life.

2.
Nanomaterials (Basel) ; 13(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36677988

RESUMO

The molecular dynamics method was used to analyze the influence of simulated temperature on the damage expansion process of the 3C-SiC sample under nano-indentation loading in order to study the influence of temperature on the internal damage and expansion mechanism of the 3C-SiC single crystal sample further during the nano-indentation loading process. A simulation test platform for diamond indenter indentation was established. The process of stress and strain distribution, dislocation evolution, dislocation expansion and potential energy change were analyzed, combined with the radial distribution function and load displacement curve. The influence of temperature on the 3C-SiC material was discussed. The variation trend of the potential energy-step curve is basically the same at the temperatures of 0 K, 300 K, 600 K and 900 K. The difference in strain distribution was characterized by the influence of temperature on stress intensity, expansion direction and type. The microcosmic manifestation is the significant difference in the dislocation slip at low temperature. In the process of dislocation evolution and expansion, dislocation climbs at room temperature and increases at high temperature, which is closely related to energy release. This study has certain guiding significance for investigating the internal damage difference and temperature effect of the 3C-SiC sample.

3.
ACS Omega ; 7(21): 18168-18178, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35664596

RESUMO

To investigate the subsurface damage of 6H-SiC nanofriction, this paper uses molecular dynamics analysis to analyze the loading process of friction 6H-SiC surfaces, thus providing an in-depth analysis of the formation mechanism of subsurface damage from microscopic crystal structure deformation characteristics. This paper constructs a diamond friction 6H-SiC nanomodel, combining the radial distribution function, dislocation extraction method, and diamond identification method with experimental analysis to verify the dislocation evolution process, stress distribution, and crack extension to investigate the subsurface damage mechanism. During the friction process, the kinetic and potential energies as well as the temperature of the 6H-SiC workpiece basically tend to rise, accompanied by the generation of dislocated lumps and cracks on the sides of the 6H-SiC workpiece. The stresses generated by friction during the plastic deformation phase lead to dislocations in the vicinity of the diamond tip friction, and the process of dislocation nucleation expansion is accompanied by energy exchange. Dislocation formation is found to be the basis for crack generation, and cracks and peeled blocks constitute the subsurface damage of 6H-SiC workpieces by diamond identification methods. Friction experiments validate microscopic crystal changes against macroscopic crack generation, which complements the analysis of the damage mechanism of the simulated 6H-sic nanofriction subsurface.

4.
J Opt Soc Am A Opt Image Sci Vis ; 39(4): 571-579, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35471379

RESUMO

Defect detection is a critical way to ensure quality for silicon-nitride-bearing rollers. To improve detection efficiency and precision for silicon-nitride-bearing roller surface defects, in this paper, a novel machine vision system for the detection of its surface defects is designed. This method combines image segmentation and wavelet fusion to extract features from an image. In turn, the features are used in a classifier based on the K-nearest neighbor for defect classification. The optimized image segmentation algorithm that is combined with wavelet fusion is the innovation of the proposed method. It is evaluated using different defect images acquired by the machine vision system. Our experiments show that the proposed machine vision system's precision in anomaly detection of the silicon-nitride-bearing roller surface can achieve 98.5%; further, its classification precision of various defects is greater than 91.5%. It has resulted in a solution for the automatic identification of the silicon-nitride-bearing roller surface defects.

5.
Materials (Basel) ; 13(10)2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429289

RESUMO

Athree-layer composite plate element is developed for finite element modeling and vibration analysis of sandwich plate with frequency-dependent viscoelastic material core. The plate element is quadrilateral element bounded by four-node with 7-degree-of-freedom per node. The frequency-dependent characteristics of viscoelastic material parameters are described using the Biot model. The method of identifying the parameters of the Biot model is given. By introducing auxiliary coordinates, the Biot model is combined with the finite element equation of the viscoelastic sandwich plate. Through a series of mathematical transformations, the equation is transformed into a standard second-order steady linear system equation form to simplify the solution process. Finally, the vibration characteristics of the viscoelastic sandwich plate are analyzed and experimentally studied. The results show that the method in this paper is correct and reliable, and it has certain reference and application value for solving similar engineering vibration problems.

6.
Materials (Basel) ; 12(20)2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31627297

RESUMO

In this work, a finite element model was developed for vibration analysis of sandwich beam with a viscoelastic material core sandwiched between two elastic layers. The frequency-dependent viscoelastic dynamics of the sandwich beam were investigated by using finite element analysis and experimental validation. The stiffness and damping of the viscoelastic material core is frequency-dependent, which results in complex vibration modes of the sandwich beam system. A third order seven parameter Biot model was used to describe the frequency-dependent viscoelastic behavior, which was then incorporated with the finite elements of the sandwich beam. Considering the parameters identification, a strategy to determine the parameters of the Biot model has been outlined, and the curve fitting results closely follow the experiment. With identified model parameters, numerical simulations were carried out to predict the vibration and damping behavior in the first three vibration modes, and the results showed that the finite model presented here had good accuracy and efficiency in the specific frequency range of interest. The experimental testing on the viscoelastic sandwich beam validated the numerical predication. The experimental results also showed that the finite element modeling method of sandwich beams that was proposed was correct, simple and effective.

7.
Materials (Basel) ; 11(2)2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29466288

RESUMO

The ultrasonic transmission spectrum in a double-layered bonded structure is related closely to its interfacial stiffness. Consequently, researching the regularity of the transmission spectrum is of significant interest in evaluating the integrity of the bonded structure. Based on the spring model and the potential function theory, a theoretical model is developed by the transfer matrix method to predict the transmission spectrum in a double-layered bonded structure. Some shift rules of the transmission peaks are obtained by numerical calculation of this model with different substrates. The results show that the resonant transmission peaks move towards a higher frequency with the increase of the normal interfacial stiffness, and each of them has different movement distances with the increasing interfacial stiffness. Indeed, it is also observed that the movement starting points of these peaks are at the specific frequency at which the thickness of either substrate plate equals an integral multiple of half a wavelength. The results from measuring the bonding specimens, which have different interfacial properties and different substrates in this experiment, are utilized to verify the theoretical analysis. Though the theory of "starting points" is not demonstrated effectively, the shift direction and distance exactly match with the result from the theoretical algorithm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...