Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Today Bio ; 25: 100993, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38440110

RESUMO

Osteoarthritis (OA) is a chronic inflammatory joint disease characterized by progressive cartilage degeneration, synovitis, and osteoid formation. In order to effectively treat OA, it is important to block the harmful feedback caused by reactive oxygen species (ROS) produced during joint wear. To address this challenge, we have developed injectable nanocomposite hydrogels composed of polygallate-Mn (PGA-Mn) nanoparticles, oxidized sodium alginate, and gelatin. The inclusion of PGA-Mn not only enhances the mechanical strength of the biohydrogel through a Schiff base reaction with gelatin but also ensures efficient ROS scavenging ability. Importantly, the nanocomposite hydrogel exhibits excellent biocompatibility, allowing it to effectively remove ROS from chondrocytes and reduce the expression of inflammatory factors within the joint. Additionally, the hygroscopic properties of the hydrogel contribute to reduced intra-articular friction and promote the production of cartilage-related proteins, supporting cartilage synthesis. In vivo experiments involving the injection of nanocomposite hydrogels into rat knee joints with an OA model have demonstrated successful reduction of osteophyte formation and protection of cartilage from wear, highlighting the therapeutic potential of this approach for treating OA.

2.
Small ; 20(13): e2308167, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37953455

RESUMO

Intervertebral disc degeneration (IVDD) is a significant contributor to low back pain, characterized by excessive reactive oxygen species generation and inflammation-induced pyroptosis. Unfortunately, there are currently no specific molecules or materials available to effectively delay IVDD. This study develops a multifunctional full name of PG@Cu nanoparticle network (PG@Cu). A designed pentapeptide, bonded on PG@Cu nanoparticles via a Schiff base bond, imparts multifunctionality to the metal polyphenol particles (PG@Cu-FP). PG@Cu-FP exhibits enhanced escape from lysosomal capture, enabling efficient targeting of mitochondria to scavenge excess reactive oxygen species. The scavenging activity against reactive oxygen species originates from the polyphenol-based structures within the nanoparticles. Furthermore, Pyroptosis is effectively blocked by inhibiting Gasdermin mediated pore formation and membrane rupture. PG@Cu-FP successfully reduces the activation of the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 inflammasome by inhibiting Gasdermin protein family (Gasdermin D, GSDMD) oligomerization, leading to reduced expression of Nod-like receptors. This multifaceted approach demonstrates higher efficiency in inhibiting Pyroptosis. Experimental results confirm that PG@Cu-FP preserves disc height, retains water content, and preserves tissue structure. These findings highlight the potential of PG@Cu-FP in improving IVDD and provide novel insights for future research in IVDD treatments.


Assuntos
Degeneração do Disco Intervertebral , Nanopartículas , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , Gasderminas , Inflamassomos/metabolismo , Mitocôndrias/metabolismo , Polifenóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...