Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36013685

RESUMO

A steady-state thermal analysis for a hollow and axisymmetric functionally graded (FG) rotating disk with a uniform thickness was performed in this study. In the studied FG disk, metal and ceramic materials were considered for the inner and outer surfaces, respectively, when the material properties varied along the radial direction but not through material thickness variations. A power law distribution was employed to represent the material properties. Three different methods were used to present the temperature distribution along the radial direction of the FG disk, namely (1) an in-house finite element (FE) program, (2) the ANSYS parametric design language (APDL), and (3) an analytical solution. Furthermore, the in-house FE program presented the thermal stress and thermal strain of the FG disk. The weighted residual method in the FEM was used to present the temperature distribution when the material properties along an element are varying in contrast with using a commercial finite element software when the material properties are constant within an element to simulate FGMs. The accuracy of the in-house FE program was tested, and it was shown that the temperature distributions obtained by using the abovementioned methods were exactly the same. A parametric material gradation study was performed to understand the effects on the temperature, thermal strain, and stress. The material gradation was found to have a significant effect in this regard. The in-house finite element program enables one to perform a post-processing analysis in a more efficient and convenient manner than that through simulations in a finite element software program such as ANSYS. Lastly, this in-house code can be used to perform an optimization analysis to minimize the thermal strain and stress while the stiffness of the plate is maintained when the material properties within an element vary.

2.
Sci Rep ; 12(1): 11076, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35773293

RESUMO

For effective cutting tool inserts that absorb thermal shock at varying temperature gradients, improved thermal conductivity and toughness are required. In addition, parameters such as the coefficient of thermal expansion must be kept within a reasonable range. This work presents a novel material design framework based on a multi-scale modeling approach that proposes nickel (Ni)-reinforced alumina (Al2O3) composites to tailor the mechanical and thermal properties required for ceramic cutting tools by considering numerous composite parameters. The representative volume elements (RVEs) are generated using the DREAM.3D software program and the output is imported into a commercial finite element software ABAQUS. The RVEs which contain multiple Ni particles with varying porosity and volume fractions are used to predict the effective thermal and mechanical properties using the computational homogenization methods under appropriate boundary conditions (BCs). The RVE framework is validated by the sintering of Al2O3-Ni composites in various compositions. The predicted numerical results agree well with the measured thermal and structural properties. The properties predicted by the numerical model are comparable with those obtained using the rules of mixtures and SwiftComp, as well as the Fast Fourier Transform (FFT) based computational homogenization method. The results show that the ABAQUS, SwiftComp and FFT results are fairly close to each other. The effects of porosity and Ni volume fraction on the mechanical and thermal properties are also investigated. It is observed that the mechanical properties and thermal conductivities decrease with the porosity, while the thermal expansion remains unaffected. The proposed integrated modeling and empirical approach could facilitate the development of unique Al2O3-metal composites with the desired thermal and mechanical properties for ceramic cutting inserts.

3.
Zhonghua Hu Li Za Zhi ; 19(1): 56-7, 61, 1984 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-6564941
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...