Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 12(3)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35323809

RESUMO

Wastewater effluents containing high concentrations of dyes are highly toxic to the environment and aquatic organisms. Recycle and reuse of both water and dye in textile industries can save energy and costs. Thus, new materials are being explored to fabricate highly efficient nanofiltration membranes for fulfilling industrial needs. In this work, three diamines, 1,4-cyclohexanediamine (CHD), ethylenediamine (EDA), and p-phenylenediamine (PPD), are reacted with TMC separately to fabricate a thin film composite polyamide membrane for dye desalination. Their chemical structures are different, with the difference located in the middle of two terminal amines. The surface morphology, roughness, and thickness of the polyamide layer are dependent on the reactivity of the diamines with TMC. EDA has a short linear alkane chain, which can easily react with TMC, forming a very dense selective layer. CHD has a cyclohexane ring, making it more sterically hindered than EDA. As such, CHD's reaction with TMC is slower than EDA's, leading to a thinner polyamide layer. PPD has a benzene ring, which should make it the most sterically hindered structure; however, its benzene ring has a pi-pi interaction with TMC that can facilitate a faster reaction between PPD and TMC, leading to a thicker polyamide layer. Among the TFC membranes, TFCCHD exhibited the highest separation efficiency (pure water flux = 192.13 ± 7.11 L∙m-2∙h-1, dye rejection = 99.92 ± 0.10%, and NaCl rejection = 15.46 ± 1.68% at 6 bar and 1000 ppm salt or 50 ppm of dye solution). After exposure at 12,000 ppm∙h of active chlorine, the flux of TFCCHD was enhanced with maintained high dye rejection. Therefore, the TFCCHD membrane has a potential application for dye desalination process.

2.
Nanomaterials (Basel) ; 12(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35159842

RESUMO

While hyaluronic acid encapsulating superparamagnetic iron oxide nanoparticles have been reported to exhibit selective cytotoxicity toward cancer cells, it is unclear whether low-molecular-weight hyaluronic acid-conjugated superparamagnetic iron oxide nanoparticles also display such cytotoxicity. In this study, high-molecular-weight hyaluronic acid was irradiated with γ-ray, while Fe3O4 nanoparticles were fabricated using chemical co-precipitation. The low-molecular-weight hyaluronic acid and Fe3O4 nanoparticles were then combined according to a previous study. Size distribution, zeta potential, and the binding between hyaluronic acid and iron oxide nanoparticles were examined using dynamic light scattering and a nuclear magnetic resonance spectroscopy. The ability of the fabricated low-molecular-weight hyaluronic acid conjugated superparamagnetic iron oxide nanoparticles to target cancer cells was examined using time-of-flight secondary ion mass spectrometry and T2* weighted magnetic resonance images to compare iron signals in U87MG human glioblastoma and NIH3T3 normal fibroblast cell lines. Comparison showed that the present material could target U87MG cells at a higher rate than NIH3T3 control cells, with a viability inhibition rate of 34% observed at day two and no cytotoxicity observed in NIH3T3 normal fibroblasts during the three-day experimental period. Supported by mass spectrometry images confirming that the nanoparticles accumulated on the surface of cancer cells, the fabricated materials can reasonably be suggested as a candidate for both magnetic resonance imaging applications and as an injectable anticancer agent.

3.
Int J Nanomedicine ; 16: 3789-3802, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34103915

RESUMO

INTRODUCTION: It has been reported that low-molecular-weight hyaluronic acid (LMWHA) exhibits a potentially beneficial effect on cancer therapy through targeting of CD44 receptors on tumor cell surfaces. However, its applicability towards tumor detection is still unclear. In this regard, LMWHA-conjugated iron (Fe3O4) nanoparticles (LMWHA-IONPs) were prepared in order to evaluate its application for enhancing the T2* weighted MRI imaging sensitivity for tumor detection. METHODS: LMWHA and Fe3O4 NPs were produced using γ-ray irradiation and chemical co-precipitation methods, respectively. First, LMWHA-conjugated FITC was prepared to confirm the ability of LMWHA to target U87MG cells using fluorescence microscopy. The hydrodynamic size distribution and dispersion of the IONPs and prepared LMWHA-IONPs were analyzed using dynamic light scattering (DLS). In addition, cell viability assays were performed to examine the biocompatibility of LMWHA and LMWHA-IONPs toward U87MG human glioblastoma and NIH3T3 fibroblast cell lines. The ability of LMWHA-IONPs to target tumor cells was confirmed by detecting iron (Fe) ion content using the thiocyanate method. Finally, time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging and in vitro magnetic resonance imaging (MRI) were performed to confirm the contrast enhancement effect of LMWHA-IONPs. RESULTS: Florescence analysis results showed that LMWHA-FITC successfully targeted the surfaces of both tested cell types. The ability of LMWHA to target U87MG cells was higher than for NIH3T3 cells. Cell viability experiments showed that the fabricated LMWHA-IONPs possessed good biocompatibility for both cell lines. After co-culturing test cells with the LMWHA-IONPs, detected Fe ion content in the U87MG cells was much higher than that of the NIH3T3 cells in both thiocyanate assays and TOF-SIMs images. Finally, the addition of LMWHA-IONPs to the U87MG cells resulted in an obvious improvement in T2* weighted MR image contrast compared to control NIH3T3 cells. DISCUSSION: Overall, the present results suggest that LMWHA-IONPs fabricated in this study provide an effective MRI contrast agent for improving the diagnosis of early stage glioblastoma in MRI examinations.


Assuntos
Raios gama , Glioblastoma/diagnóstico por imagem , Ácido Hialurônico/química , Ferro/química , Imageamento por Ressonância Magnética , Nanopartículas Metálicas/química , Animais , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Glioblastoma/patologia , Humanos , Ácido Hialurônico/ultraestrutura , Nanopartículas Metálicas/ultraestrutura , Camundongos , Peso Molecular , Células NIH 3T3 , Ácido Oleico/química , Tamanho da Partícula
4.
Polymers (Basel) ; 12(5)2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403369

RESUMO

Low-molecular-weight hyaluronic acid (LMWHA) was integrated with superparamagnetic Fe3O4 nanoparticles (Fe3O4 NPs). The size distribution, zeta potential, viscosity, thermogravimetric and paramagnetic properties of the LMWHA-Fe3O4 NPs were systematically examined. For cellular experiments, MCF7 breast cancer cell line was carried out. In addition, the cell targeting ability and characteristics of the LMWHA-Fe3O4 NPs for MCF7 breast cancer cells were analyzed using the thiocyanate method and time-of-flight secondary ion mass spectrometry (TOF-SIMS). The experimental results showed that the LMWHA-Fe3O4 NPs were not only easily injectable due to their low viscosity, but also exhibited a significant superparamagnetic property. Furthermore, the in vitro assay results showed that the NPs had negligible cytotoxicity and exhibited a good cancer cell targeting ability. Overall, the results therefore suggest that the LMWHA-Fe3O4 NPs have considerable potential as an injectable agent for enhanced magnetic resonance imaging (MRI) and/or hyperthermia treatment in breast cancer therapy.

5.
Macromol Rapid Commun ; 41(3): e1900542, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31880040

RESUMO

A compatible organic/inorganic nanocomposite film for a stretchable resistive memory device with high performance is demonstrated using poly(4-vinylpyridine)-block-poly(propyl methacrylate) (P4VP-b-PPMA) with zinc oxide (ZnO) nanoparticle. The PPMA soft segment is designed for reducing the rigidity of the active layer, while the P4VP block serves as a charge-trapping component to induce conductive filament and also a compatible moiety for inorganic nanoparticles through hydrogen bonding. The experimental results show that the P4VP-b-PPMA-based electrical memory device exhibits write-once-read-many-times memory behavior and an excellent ON/OFF current ratio of over 105 with a stable turn-on voltage (Vset ) around -2.0 V and stable memory behavior upon stretching up to 60% strain. On the other hand, P4VP-b-PPMA/ZnO nanocomposite film switches the memory characteristic to the dynamic random access memory behavior. The stretchable memory device prepared from the nanocomposite film can have a stretching durability over 40% strain and up to 1000 times cycling stretch-relaxation test. This work demonstrates a new strategy using nanocomposite films with tunable electrical characteristics and enhanced mechanical properties for stretchable electrical devices.


Assuntos
Dispositivos de Armazenamento em Computador , Eletrônica/métodos , Nanocompostos/química , Polímeros/química , Condutividade Elétrica , Eletricidade , Eletrônica/instrumentação , Metacrilatos/química , Compostos Orgânicos/química , Polímeros/análise , Piridinas/química , Óxido de Zinco/química
6.
Biomed Microdevices ; 15(5): 879-85, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23743997

RESUMO

In this study, a novel method for the fabrication of hollow three-dimensional (3D) poly(lactic-co-glycolic acid) (PLGA) microvessel scaffolds is proposed. In this novel fabrication method, a salt ingot, which was used as a temporary frame to define the shape of the desired scaffold, was fabricated by extrusion molding. The salt ingot was immersed in a PLGA solution and the PGLA enveloped the ingot entirely. The femtosecond laser ablation technique was used for ablating the desired pattern on the PLGA layer and then the salt ingot was completely dissolved in distilled deionized water. A hollow 3D PLGA scaffold was obtained using this process on which bovine endothelial cells (BECs) were then cultured. Scanning electron microscopy (SEM) and fluorescent images of the cell seeding demonstrate that the BECs adhered and grew well on both the side-wall of the branches and the surroundings of each branch.


Assuntos
Ácido Láctico/química , Lasers , Microvasos/química , Conformação Molecular , Ácido Poliglicólico/química , Animais , Materiais Biocompatíveis/química , Bovinos , Adesão Celular/fisiologia , Proliferação de Células , Células Cultivadas , Células Endoteliais/citologia , Desenho de Equipamento , Microscopia Eletrônica de Varredura , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Engenharia Tecidual/métodos , Alicerces Teciduais
7.
Rheumatology (Oxford) ; 51(11): 1953-65, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22843790

RESUMO

OBJECTIVE: To assess the effects of epigallocatechin-3-gallate (EGCG) on cytokine-induced Cyr61 synthesis in human osteoblastic cells and the associated signalling pathways. The therapeutic effect of EGCG on CIA in rats was also studied. METHODS: The expression of Cyr61 and NF-κB pathway molecules was examined by western blotting. CCL2 expression was assessed by northern blotting and ELISA. Interaction between NF-κB and Cyr61 promoter was evaluated by electrophoretic mobility shift assay. In rat CIA, osteoblastic expression of Cyr61 was examined by immunohistochemistry and disease progression was assessed by clinical, radiographic and histological examinations. RESULTS: EGCG inhibited Cyr61 expression stimulated by cytokines in primary human osteoblasts and human osteoblastic cell line U2OS. In U2OS, oncostatin M (OSM) induced IκB-α degradation through the mTOR/rictor/Akt pathway, and EGCG attenuated the action. Electrophoretic mobility shift assay revealed that the OSM-enhanced NF-κB/DNA binding was reduced by EGCG, possibly through abrogating nucleus localization of p65 and p50. Cyr61 enhanced OSM-induced expression of CCL2. Moreover, EGCG diminished OSM-stimulated CCL2 expression at least partially via suppressing Cyr61 induction. Co-distribution of CD68(+) macrophages and Cyr61(+) osteoblasts in osteolytic areas was obvious in the CIA model. Clinical, radiographic and immunohistochemical analyses revealed that administration of EGCG markedly diminished the severity of CIA, macrophage infiltration, and the number of Cyr61-synthesizing osteoblasts. CONCLUSION: By modulating the mTOR/rictor/Akt/NF-κB pathway, EGCG attenuated Cyr61 production in osteoblastic cells and in turn diminished macrophage chemotaxis. Our data support the therapeutic potential of EGCG on arthritis.


Assuntos
Artrite/terapia , Catequina/análogos & derivados , Proteína Rica em Cisteína 61/biossíntese , Citocinas/farmacologia , Osteoblastos/metabolismo , Adulto , Animais , Artrite/metabolismo , Catequina/farmacologia , Células Cultivadas , Quimiocina CCL2/metabolismo , Cromonas/farmacologia , Proteína Rica em Cisteína 61/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Fosfatos de Inositol/farmacologia , Masculino , Morfolinas/farmacologia , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Adulto Jovem
8.
Int J Nanomedicine ; 7: 1865-73, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22605935

RESUMO

One of the persistent challenges confronting tissue engineering is the lack of intrinsic microvessels for the transportation of nutrients and metabolites. An artificial microvascular system could be a feasible solution to this problem. In this study, the femtosecond laser ablation technique was implemented for the fabrication of pillared microvessel scaffolds of polylactic-co-glycolic acid (PLGA). This novel scaffold facilitates implementation of the conventional cell seeding process. The progress of cell growth can be observed in vitro by optical microscopy. The problems of becoming milky or completely opaque with the conventional PLGA scaffold after cell seeding can be resolved. In this study, PLGA microvessel scaffolds consisting of 47 µm × 80 µm pillared branches were produced. Results of cell culturing of bovine endothelial cells demonstrate that the cells adhere well and grow to surround each branch of the proposed pillared microvessel networks.


Assuntos
Técnicas de Cultura de Células/instrumentação , Ácido Láctico/química , Lasers , Ácido Poliglicólico/química , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Bovinos , Adesão Celular , Proliferação de Células , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Desenho de Equipamento , Microtecnologia/métodos , Microvasos , Modelos Cardiovasculares , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
9.
J Endod ; 38(6): 757-63, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22595108

RESUMO

INTRODUCTION: Autophagy is a process for recycling intracellular organelles as a survival mechanism. Apoptosis has important biological roles in the pathogenesis of many diseases. This study elucidated the effect of simvastatin on autophagy/apoptosis in MC3T3E1 murine osteoblastic cells and also the significance of this action on the progression of induced rat apical periodontitis. METHODS: We examined the H2O2-stimulated expression of LC3-II (an autophagy marker) and poly (adenosine phosphate ribose) polymerase (PARP) fragmentation (an apoptosis marker) in MC3T3E1 by Western analysis. In a rat model of induced apical periodontitis, the relation between disease progression and osteoblastic expression of Beclin-1 (an autophagy marker) and terminal deoxyuridine triphosphate nick end-labeling (an apoptosis marker) was studied by radiographic and immunohistochemistry analyses. RESULTS: Western blot showed elevated levels of LC3-II and PARP cleavage after H2O2 treatment. An autophagy inhibitor 3-methyladenine promoted whereas rapamycin (an autophagy enhancer) diminished H2O2-induced PARP cleavage. Simvastatin enhanced H2O2-induced LC3-II formation and simultaneously decreased PARP fragmentation. Radiography and immunohistopathology demonstrated that simvastatin reduced the number of apoptotic osteoblasts and the extension of periapical lesions in rats. The number of Beclin-1-synthesizing osteoblasts also increased markedly after simvastatin treatment. CONCLUSIONS: We found a negative relation between autophagy and apoptosis in osteoblastic cells. In addition, simvastatin suppressed apoptosis and enhanced autophagy both in vitro and in vivo. Our data implied that simvastain might alleviate the progression of apical periodontitis by promoting autophagy to protect osteoblasts from turning apoptotic.


Assuntos
Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Periodontite Periapical/tratamento farmacológico , Sinvastatina/farmacologia , Células 3T3 , Animais , Anti-Inflamatórios/uso terapêutico , Peróxido de Hidrogênio/farmacologia , Marcação In Situ das Extremidades Cortadas , Camundongos , Proteínas Associadas aos Microtúbulos/biossíntese , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/metabolismo , Ratos , Sinvastatina/uso terapêutico
10.
Opt Express ; 19(17): 16390-400, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21935002

RESUMO

This study demonstrates a non-degenerate pump-probe spectroscopy with a white light beam probe based on a regenerative, amplified, mode-locked, Ti:sapphire laser. This white light beam probe is produced by supercontinuum generation of sapphire crystal after ultra-short pulse excitation. To implement the pump-probe experimental operation, the ablation dynamics with and without fresh spot measurements in fused silica samples are demonstrated. Combining the time-resolved differential reflection profiles in the white light range and X-ray photoelectron spectroscopy spectra of fused silica, the following ablation dynamics processes can be observed: Without fresh spot measurements, once carriers are excited, first, the three absorption bands of the intrinsic defect sites are observed within 750 fs. Then, a fast recovery is observed. This recovery comes from defect-trapped carriers excited to conduction bands through hot-carrier-phonon interactions. In the final step, a rapidly rising signal is observed after 800 fs. This signal rise comes from the creation of free-electron plasma, the density of which increases with increasing excitation energy accumulation. With fresh spot measurements, time delay of carrier dynamics among the three bands can be identified clearly within 750 fs. The intrinsic defect sites of fused silica play the key role during the ultrafast laser ablation process.

11.
Opt Lett ; 35(14): 2490-2, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20634873

RESUMO

We have conducted experimental investigations for the micromachining of dielectrics (fused silica) using an integrated femtosecond (fs) and nanosecond (ns) dual-beam laser system at different time delays between the fs and ns pulses. We found that the maximum ablation enhancement occurs when the fs pulse is shot near the peak of the ns pulse envelope. Enhancements up to 13.4 times in ablation depth and 50.7 times in the amount of material removal were obtained, as compared to fs laser ablation alone. The fs pulse increases the free electron density and changes the optical properties of fused silica to have metallic characteristics, which increases the absorption of the ns laser energy. This study provides an opportunity for efficient micromachining of dielectrics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...