Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38872439

RESUMO

Brominated byproducts and toxicity generation are critical issues for ozone application to wastewater containing bromide. This study demonstrated that ultraviolet/ozone (UV/O3, 100 mJ/cm2, 1 mg-O3/mg-DOC) reduced the cytotoxicity of wastewater from 14.2 mg of pentol/L produced by ozonation to 4.3 mg of pentol/L (1 mg/L bromide, pH 7.0). The genotoxicity was also reduced from 1.65 to 0.17 µg-4-NQO/L by UV/O3. Compared with that of O3 alone, adsorbable organic bromine was reduced from 25.8 to 5.3 µg/L by UV/O3, but bromate increased from 32.9 to 71.4 µg/L. The UV/O3 process enhanced the removal of pre-existing precursors (highly unsaturated and phenolic compounds and poly aromatic hydrocarbons), while new precursors were generated, yet the combined effect of UV/O3 on precursors did not result in a significant change in toxicity. Instead, UV radiation inhibited HOBr concentration through both rapid O3 decomposition to reduce HOBr production and decomposition of the formed HOBr, thus suppressing the AOBr formation. However, the hydroxyl radical-dominated pathway in UV/O3 led to a significant increase of bromate. Considering both organic bromine and bromate, the UV/O3 process effectively controlled both cytotoxicity and genotoxicity of wastewater to mammalian cells, even though an emphasis should be also placed on managing elevated bromate. Futhermore, other end points are needed to evaluate the toxicity outcomes of the UV/O3 process.

2.
J Hazard Mater ; 474: 134703, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38805817

RESUMO

Graphitic carbon nitride has gained considerable attention as a visible-light photocatalyst. However, its photocatalytic efficiency is restricted by its limited capacity for absorbing visible light and swift recombination of charge carriers. To overcome this bottleneck, we fabricated an atomic Fe-dispersed ultrathin carbon nitride (Fe-UTCN) photocatalyst via one-step thermal polymerization. Fe-UTCN showed high efficiency in the photodegradation of acetaminophen (APAP), achieving > 90 % elimination within 60-min visible light irradiation. The anchoring of Fe atoms improved the photocatalytic activity of UTCN by narrowing the bandgap from 2.50 eV to 2.33 eV and suppressing radiative recombination. Calculations by density functional theory revealed that the Fe-N4 sites (adsorption energy of - 3.10 eV) were preferred over the UTCN sites (adsorption energy of - 0.18 eV) for the adsorption of oxygen and the subsequent formation of O2•-, the dominant reactive species in the degradation of APAP. Notably, the Fe-UTCN catalyst exhibited good stability after five successive runs and was applicable to complex water matrices. Therefore, Fe-UTCN, a noble-metal-free photocatalyst, is a promising candidate for visible light-driven water decontamination.

3.
Water Res ; 255: 121533, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38569359

RESUMO

Low-pressure mercury lamps emitting at 254 nm (UV254) are used widely for disinfection. However, subsequent exposure to visible light results in photoreactivation of treated bacteria. This study employed a krypton chloride excimer lamp emitting at 222 nm (UV222) to inactivate E. coli. UV222 and UV254 treatment had similar E. coli-inactivation kinetics. Upon subsequent irradiation with visible light, E. coli inactivated by UV254 was reactivated from 2.71-log to 4.75-log, whereas E. coli inactivated by UV222 showed negligible photoreactivation. UV222 treatment irreversibly broke DNA strands in the bacterium, whereas UV254 treatment primarily formed nucleobase dimers. Additionally, UV222 treatment caused cell membrane damage, resulting in wizened, pitted cells and permeability changes. The damage to the cell membrane was mainly due to the photolysis of proteins and lipids by UV222. Furthermore, the photolysis of proteins by UV222 destroyed enzymes, which blocked photoreactivation and dark repair. The multiple damages can be further evidenced by 4.0-61.1 times higher quantum yield in the photolysis of nucleobases and amino acids for UV222 than UV254. This study demonstrates that UV222 treatment damages multiple sites in bacteria, leading to their inactivation. Employing UV222 treatment as an alternative to UV254 could be viable for inhibiting microorganism photoreactivation in water and wastewater.

4.
Environ Sci Technol ; 58(16): 7113-7123, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38547102

RESUMO

Low-pressure mercury lamps with high-purity quartz can emit both vacuum-UV (VUV, 185 nm) and UV (254 nm) and are commercially available and promising for eliminating recalcitrant organic pollutants. The feasibility of VUV/UV as a chemical-free oxidation process was verified and quantitatively assessed by the concept of H2O2 equivalence (EQH2O2), at which UV/H2O2 showed the same performance as VUV/UV for the degradation of trace organic contaminants (TOrCs). Although VUV showed superior H2O activation and oxidation performance, its performance highly varied as a function of light path length (Lp) in water, while that of UV/H2O2 proportionally decreased with decreasing H2O2 dose regardless of Lp. On increasing Lp from 1.0 to 3.0 cm, the EQH2O2 of VUV/UV decreased from 0.81 to 0.22 mM H2O2. Chloride and nitrate hardly influenced UV/H2O2, but they dramatically inhibited VUV/UV. The competitive absorbance of VUV by chloride and nitrate was verified as the main reason. The inhibitory effect was partially compensated by •OH formation from the propagation reactions of chloride or nitrate VUV photolysis, which was verified by kinetic modeling in Kintecus. In water with an Lp of 2.0 cm, the EQH2O2 of VUV/UV decreased from 0.43 to 0.17 mM (60.8% decrease) on increasing the chloride concentration from 0 to 15 mM and to 0.20 mM (53.5% decrease) at 4 mM nitrate. The results of this study provide a comprehensive understanding of VUV/UV oxidation in comparison to UV/H2O2, which underscores the suitability and efficiency of chemical-free oxidation with VUV/UV.


Assuntos
Peróxido de Hidrogênio , Compostos Orgânicos , Oxirredução , Raios Ultravioleta , Peróxido de Hidrogênio/química , Compostos Orgânicos/química , Fotólise , Poluentes Químicos da Água/química , Nitratos/química
5.
Water Res ; 253: 121353, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401473

RESUMO

Ozonation of wastewater containing bromide (Br-) forms highly toxic organic bromine. The effectiveness of ozonation in mitigating wastewater toxicity is minimal. Simultaneous application of ozone (O3) (5 mg/L) and ferrate(VI) (Fe(VI)) (10 mg-Fe/L) reduced cytotoxicity and genotoxicity towards mammalian cells by 39.8% and 71.1% (pH 7.0), respectively, when the wastewater has low levels of Br-. This enhanced reduction in toxicity can be attributed to increased production of reactive iron species Fe(IV)/Fe(V) and reactive oxygen species (•OH) that possess higher oxidizing ability. When wastewater contains 2 mg/L Br-, ozonation increased cytotoxicity and genotoxicity by 168%-180% and 150%-155%, respectively, primarily due to the formation of organic bromine. However, O3/Fe(VI) significantly (p < 0.05) suppressed both total organic bromine (TOBr), BrO3-, as well as their associated toxicity. Electron donating capacity (EDC) measurement and precursor inference using Orbitrap ultra-high resolution mass spectrometry found that Fe(IV)/Fe(V) and •OH enhanced EDC removal from precursors present in wastewater, inhibiting electrophilic substitution and electrophilic addition reactions that lead to organic bromine formation. Additionally, HOBr quenched by self-decomposition-produced H2O2 from Fe(VI) also inhibits TOBr formation along with its associated toxicity. The adsorption of Fe(III) flocs resulting from Fe(VI) decomposition contributes only minimally to reducing toxicity. Compared to ozonation alone, integration of Fe(VI) with O3 offers improved safety for treating wastewater with varying concentrations of Br-.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Animais , Bromo , Águas Residuárias , Compostos Férricos , Peróxido de Hidrogênio/análise , Oxirredução , Poluentes Químicos da Água/química , Purificação da Água/métodos , Ferro/química , Ozônio/química , Mamíferos
6.
Environ Sci Process Impacts ; 26(5): 824-831, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38323647

RESUMO

The control of viruses in water is critical to preventing the spread of infectious viral diseases. Many oxidants can inactivate viruses, and this study aims to systematically compare the disinfection effects of ozone (O3), peroxymonosulfate (PMS), and hydrogen peroxide (H2O2) on MS2 coliphage. The effects of oxidant dose and contact time on disinfection were explored, as were the disinfection effects of three oxidizing agents in secondary effluent. The 4-log inactivation of MS2 coliphage required 0.05 mM O3, 0.5 mM PMS, or 25 mM H2O2 with a contact time of 30 min. All three oxidants achieved at least 4-log disinfection within 30 min, and O3 required only 0.5 min. In secondary effluent, all three oxidants also achieved 4-log inactivation of MS2 coliphage. Excitation-emission matrix (EEM) results indicate that all three oxidants removed dissolved organic matter synchronously and O3 oxidized dissolved organic matter more thoroughly while maintaining disinfection efficacy. Considering the criteria of oxidant dose, contact time, and disinfection efficacy in secondary effluent, O3 is the best choice for MS2 coliphage disinfection among the three oxidants.


Assuntos
Desinfecção , Peróxido de Hidrogênio , Levivirus , Ozônio , Peróxidos , Purificação da Água , Ozônio/química , Ozônio/farmacologia , Desinfecção/métodos , Levivirus/efeitos dos fármacos , Peróxidos/química , Purificação da Água/métodos , Microbiologia da Água , Desinfetantes/farmacologia , Oxidantes/farmacologia , Oxidantes/química
7.
ACS Nano ; 18(4): 2885-2897, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38236146

RESUMO

Developing efficient heterogeneous H2O2 decomposition catalysts under neutral conditions is of great importance in many fields such as clinical therapy, sewage treatment, and semiconductor manufacturing but still suffers from low intrinsic activity and ambiguous mechanism understanding. Herein, we constructed activated carbon supported with an Ir-Fe dual-metal-atom active sites catalyst (IrFe-AC) by using a facile method based on a pulsed laser. The electron redistribution in Ir-Fe dual-metal-atom active sites leads to the formation of double reductive metal active sites, which can strengthen the metal-H2O2 interaction and boost the H2O2 decomposition performance of Ir-Fe dual-metal-atom active sites. Ir-Fe dual-metal-atom active sites show a high second-order reaction rate constant of 3.53 × 106 M-1·min-1, which is ∼106 times higher than that of Fe3O4. IrFe-AC is effective in removing excess intracellular reactive oxygen species, protecting DNA, and reducing inflammation under oxidative stress, indicating its therapeutic potential against oxidative stress-related diseases. This study could advance the mechanism understanding of H2O2 decomposition by heterogeneous catalysts and provide guidance for the rational design of high-performance catalysts for H2O2 decomposition.

8.
Chemosphere ; 349: 140807, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38029937

RESUMO

Permanganate is a common preoxidant applied in water treatment to remove organic pollutants and to reduce the formation of disinfection by-products. However, the effect of permanganate preoxidation on the transformation of dissolved effluent organic matter (dEfOM) and on the formation of unknown chlorinated disinfection by-products (Cl-DBPs) during chlorination remains unknown at molecular level. In this work, the molecular changes of dEfOM during permanganate preoxidation and subsequent chlorination were characterized using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Permanganate preoxidation was found to decrease the DBE (double bond equivalent) and AImod (modified aromaticity index) of the dEfOM. The identity and fate of over 400 unknown Cl-DBPs during KMnO4-chlorine treatment were investigated. Most Cl-DBPs and the precursors were found to be highly unsaturated aliphatic and phenolic compounds. The Cl-DBPs precursors with lower H/C and lower O/C were preferentially removed by permanganate preoxidation. Additionally, permanganate preoxidation decreased the number of unknown Cl-DBPs by 30% and intensity of unknown Cl-DBPs by 25%. One-chlorine-containing DBPs were the major Cl-DBPs and had more CH2 groups and higher DBEw than Cl-DBPs containing two and three chlorine atoms. 60% of the Cl-DBPs formation was attributed to substitution reactions (i.e., +Cl-H, +2Cl-2H, +3Cl-3H, +ClO-H, +Cl2O3-2H). This work provides detailed molecular level information on the efficacy of permanganate preoxidation on the control of overall Cl-DBPs formation during chlorination.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Desinfecção/métodos , Matéria Orgânica Dissolvida , Halogenação , Cloro/análise , Purificação da Água/métodos , Poluentes Químicos da Água/análise , Desinfetantes/química
9.
Environ Sci Technol ; 58(3): 1700-1708, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38154042

RESUMO

Ozonation is universally used during water treatment but can form hazardous brominated disinfection byproducts (Br-DBPs). While sunlight exposure is advised to reduce the risk of Br-DBPs, their phototransformation pathways remain insufficiently understood. Here, sunlight irradiation was found to reduce adsorbable organic bromine by 63%. Applying high-resolution mass spectrometry, the study investigated transformations of dissolved organic matter in sunlit-ozonated reclaimed water, revealing the number and abundance of assigned formulas decreased after irradiation. The Br-DBPs with O/C < 0.6 and MW > 400 Da were decreased or removed after irradiation, with the majority being CHOBr compounds. The peak intensity reduction ratio of CHOBr compounds correlated positively with double bound equivalent minus oxygen ratios but negatively with O/C, suggesting that photo-susceptible CHOBr compounds were highly unsaturated. Mass difference analysis revealed that the photodegradation pathways were mainly oxidation aligned with debromination. Three typical CHOBr molecular structures were resolved, and their photoproducts were proposed. Toxicity estimates indicated decreased toxicity in these photoproducts compared to their parent compounds, in line with experimentally determined values. Our proposed phototransformation pathways for Br-DBPs enhance our comprehension of their degradation and irradiation-induced toxicity reduction in reclaimed water, further illuminating their transformation under sunlight in widespread environmental scenarios.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Desinfecção/métodos , Desinfetantes/análise , Desinfetantes/química , Desinfetantes/toxicidade , Halogenação , Poluentes Químicos da Água/análise , Purificação da Água/métodos
10.
J Environ Sci (China) ; 139: 12-22, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105040

RESUMO

Carbon nitride has been extensively used as a visible-light photocatalyst, but it has the disadvantages of a low specific surface area, rapid electron-hole recombination, and relatively low light absorbance. In this study, single-atom Ag was successfully anchored on ultrathin carbon nitride (UTCN) via thermal polymerization, the catalyst obtained is called AgUTCN. The Ag hardly changed the carbon nitride's layered and porous physical structure. AgUTCN exhibited efficient visible-light photocatalytic performances in the degradation of various recalcitrant pollutants, eliminations of 85% were achieved by visible-light irradiation for 1 hr. Doping with Ag improved the photocatalytic performance of UTCN by narrowing the forbidden band gap from 2.49 to 2.36 eV and suppressing electron-hole pair recombination. In addition, Ag doping facilitated O2 adsorption on UTCN by decreasing the adsorption energy from -0.2 to -2.22 eV and favored the formation of O2·-. Electron spin resonance and radical-quenching experiments showed that O2·- was the major reactive species in the degradation of Acetaminophen (paracetamol, APAP).


Assuntos
Acetaminofen , Poluentes Ambientais , Nitrilas/química , Carbono , Catálise
11.
Environ Int ; 182: 108314, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979535

RESUMO

Vacuum ultraviolet (VUV, 185 + 254 nm) irradiation performs well for oxidation of model pollutants. However, oxidation of pollutants does not necessarily lead to a reduction in toxicity. Currently, a comprehensive understanding of the effect of VUV irradiation on the toxicity of real wastewater is still lacking. In this study, the influence of VUV irradiation on the toxicity of secondary effluents to Chinese hamster ovary (CHO) cells was investigated. The induction units of endogenous reactive oxygen species (ROS) and 8-hydroxyguanosine (8-OHdG) in cells continuously decreased with prolonged irradiation time. After 36 min of irradiation, the cytotoxicity and the genotoxicity of the secondary effluents were reduced by 57%-63% and 56%-61%, respectively. The UV (254 nm), •OH, and other substances generated during the VUV irradiation directly drive toxicity changes of wastewater. The contribution of •OH generated during VUV irradiation to the reductions in cytotoxicity and genotoxicity of the secondary effluents reached 72%-78% and 77%-84%, respectively. Hydroxyl radicals generated during VUV irradiation played an important role in the detoxification. The relative signal intensity of dissolved organic carbon (DOC) > 500 Da was partially removed, whereas that of DOC < 500 Da was small changed. Since the content of DOC > 500 Da in the samples was much lower than that of DOC < 500 Da, the removal of total DOC was only 15.8%-20.0% after 36 min of irradiation. The UV254 values and the fluorescence intensity values for different molecular weights (MWs) were all reduced effectively by VUV irradiation. Electron-rich organic compounds of all MWs were all sensitive to VUV irradiation. There were mono-linear relationships between changes in chemical indexes and changes in cytotoxicity or genotoxicity. The total fluorescence intensity (Ex: 220-420 nm, Em: 280-560 nm) was identified as the best indicator of the reduction in toxicity.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Purificação da Água , Cricetinae , Animais , Águas Residuárias , Células CHO , Vácuo , Cricetulus , Raios Ultravioleta , Compostos Orgânicos , Matéria Orgânica Dissolvida , Oxirredução , Poluentes Químicos da Água/análise
12.
Nat Commun ; 14(1): 5734, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37714847

RESUMO

Water disinfection is conventionally achieved by oxidation or irradiation, which is often associated with a high carbon footprint and the formation of toxic byproducts. Here, we describe a nano-structured material that is highly effective at killing bacteria in water through a hydrodynamic mechanism. The material consists of carbon-coated, sharp Cu(OH)2 nanowires grown on a copper foam substrate. We show that mild water flow (e.g. driven from a storage tank) can efficiently tear up bacteria through a high dispersion force between the nanotip surface and the cell envelope. Bacterial cell rupture is due to tearing of the cell envelope rather than collisions. This mechanism produces rapid inactivation of bacteria in water, and achieved complete disinfection in a 30-day field test. Our approach exploits fluidic energy and does not require additional energy supply, thus offering an efficient and low-cost system that could potentially be incorporated in water treatment processes in wastewater facilities and rural communities.


Assuntos
Desinfecção , Hidrodinâmica , Bactérias , Carbono , Membrana Celular
13.
Molecules ; 28(18)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37764308

RESUMO

Lung cancer is one of the most common cancers around the world, with a high mortality rate. Despite substantial advancements in diagnoses and therapies, the outlook and survival of patients with lung cancer remains dismal due to drug tolerance and malignant reactions. New interventional treatments urgently need to be explored if natural compounds are to be used to reduce toxicity and adverse effects to meet the needs of lung cancer clinical treatment. An internalizing arginine-glycine-aspartic acid (iRGD) modified by a tumour-piercing peptide liposome (iRGD-LP-CUR-PIP) was developed via co-delivery of curcumin (CUR) and piperine (PIP). Its antitumour efficacy was evaluated and validated via in vivo and in vitro experiments. iRGD-LP-CUR-PIP enhanced tumour targeting and cellular internalisation effectively. In vitro, iRGD-LP-CUR-PIP exhibited enhanced cellular uptake, suppression of tumour cell multiplication and invasion and energy-independent cellular uptake. In vivo, iRGD-LP-CUR-PIP showed high antitumour efficacy, mainly in terms of significant tumour volume reduction and increased weight and spleen index. Data showed that iRGD peptide has active tumour targeting and it significantly improves the penetration and cellular internalisation of tumours in the liposomal system. The use of CUR in combination with PIP can exert synergistic antitumour activity. This study provides a targeted therapeutic system based on natural components to improve antitumour efficacy in lung cancer.

14.
Water Res ; 243: 120435, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37536248

RESUMO

Electroneutral carbonyls (ENCs) with low molecular weights (e.g., aldehydes and ketones) are recalcitrant to single water treatment process to achieve ultralow concentration. Residual ENCs are present in reverse osmosis permeate and pose risks to human health during potable use or industrial application in manufacturing processes. Herein, a combined vacuum-UV (VUV) oxidation and anion-exchange resin (AER) adsorption method was developed to treat the ENCs and reduce total organic carbon (TOC) to an ultralow concentration (< 5 µg/L) with high efficiency and at low cost. VUV-AER was 2.1-2.4 times more efficient than VUV alone for the removal of TOC. VUV oxidized the ENCs to electronegative carboxylic acids, which were adsorbed by the AER through electrostatic interactions and hydrogen bonding. When the VUV fluence was lower than 643 mJ cm-2, the AER could not achieve ultralow TOC removal of ENCs. The treat capacity of 1500-2900 valid bed volume (BVs) was achieved after increasing the VUV fluence to 1929 mJ cm-2. The AER could more efficiently adsorb carboxylic acids that contained more carboxylic groups or shorter carbon chain. Acetate was identified as the primary breakthrough product at relatively low VUV fluence, and oxalate was the main byproduct at relatively high VUV fluence. A mathematical model to predict TOC breakthrough was developed considering the VUV-oxidation kinetics and the AER breakthrough curve. The model was used to optimize the method to maximize TOC removal and minimize energy consumption. These results imply that VUV-AER is technically feasible and economically applicable to eliminate recalcitrant ENCs to ultralow concentration for the production of water requires high quality (e.g., potable water or electronic-grade ultrapure water).


Assuntos
Poluentes Químicos da Água , Purificação da Água , Humanos , Vácuo , Adsorção , Raios Ultravioleta , Oxirredução , Purificação da Água/métodos , Ácidos Carboxílicos , Carbono , Ânions
15.
J Hazard Mater ; 458: 131935, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37385095

RESUMO

Ferrate [Fe(VI)] can efficiently degrade various pollutants in wastewater. Biochar application can reduce resource use and waste emission. This study investigated the performance of Fe(VI)/biochar pretreatment to reduce disinfection byproducts (DBPs) and cytotoxicity to mammalian cells of wastewater during post-chlorination. Fe(VI)/biochar was more effective at inhibiting the cytotoxicity formation than Fe(VI) alone, reducing the cytotoxicity from 12.7 to 7.6 mg-phenol/L. The concentrations of total organic chlorine and total organic bromine decreased from 277 to 130 µg/L and from 51 to 39 µg/L, compared to the samples without pretreatment. Orbitrap ultra-high resolution mass spectrometry revealed that the number of molecules of DBPs decreased substantially from 517 to 229 by Fe(VI)/biochar, with the greatest reduction for phenols and highly unsaturated aliphatic compounds. In combination with the substantial reduction of 1Cl-DBPs and 2Cl-DBPs, 1Br-DBPs and 2Br-DBPs were also reduced. Fluorescence excitation-emission matrix coupled with parallel factor analysis suggested that fulvic acid-like substances and aromatic amino acid was obviously reduce likely due to the enhanced oxidation of Fe(IV)/Fe(V) produced by Fe(VI)/biochar and adsorption of biochar. Furthermore, the DBPs generated by electrophilic addition and electrophilic substitution of precursors were reduced. This study shows that Fe(VI)/biochar pretreatment can effectively reduce cytotoxicity formation during post-chlorination by transforming DBPs and their precursors.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Halogenação , Águas Residuárias , Desinfecção/métodos , Fenóis/análise , Purificação da Água/métodos , Poluentes Químicos da Água/química , Desinfetantes/química
16.
Proc Natl Acad Sci U S A ; 120(16): e2219923120, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37040400

RESUMO

The high-valent cobalt-oxo species (Co(IV)=O) is being increasingly investigated for water purification because of its high redox potential, long half-life, and antiinterference properties. However, generation of Co(IV)=O is inefficient and unsustainable. Here, a cobalt-single-atom catalyst with N/O dual coordination was synthesized by O-doping engineering. The O-doped catalyst (Co-OCN) greatly activated peroxymonosulfate (PMS) and achieved a pollutant degradation kinetic constant of 73.12 min-1 g-2, which was 4.9 times higher than that of Co-CN (catalyst without O-doping) and higher than those of most reported single-atom catalytic PMS systems. Co-OCN/PMS realized Co(IV)=O dominant oxidation of pollutants by increasing the steady-state concentration of Co(IV)=O (1.03 × 10-10 M) by 5.9 times compared with Co-CN/PMS. A competitive kinetics calculation showed that the oxidation contribution of Co(IV)=O to micropollutant degradation was 97.5% during the Co-OCN/PMS process. Density functional theory calculations showed that O-doping influenced the charge density (increased the Bader charge transfer from 0.68 to 0.85 e), optimized the electron distribution of the Co center (increased the d-band center from -1.14 to -1.06 eV), enhanced the PMS adsorption energy from -2.46 to -3.03 eV, and lowered the energy barrier for generation of the key reaction intermediate (*O*H2O) during Co(IV)=O formation from 1.12 to 0.98 eV. The Co-OCN catalyst was fabricated on carbon felt for a flow-through device, which achieved continuous and efficient removal of micropollutants (degradation efficiency of >85% after 36 h operation). This study provides a new protocol for PMS activation and pollutant elimination through single-atom catalyst heteroatom-doping and high-valent metal-oxo formation during water purification.

17.
Water Res ; 237: 119952, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37104935

RESUMO

Micro-bubble aeration is an efficient way to promote ozonation performance, but the technology is challenged by extensive energy cost. Here, a ceramic ultrafiltration membrane was used to achieve ozone micro-bubble (0-80 µm) aeration in a simple way at gaseous pressures of 0.14-0.19 MPa. Compared with milli-bubble aeration, micro-bubble aeration increased the equilibrium aquatic O3 concentrations by 1.53-3.25 times and apparent O3 transfer rates by 3.12-3.35 times at pH 5.0-8.0. Consequently, the •OH yield was 2.67-3.54 times via faster O3 transfer to the aquatic solution followed by decomposition rather than interfacial reaction. Ozone micro-bubble aeration outperformed milli-bubble aeration, with the degradation kinetics of 2,4-D being 3.08-4.36 times higher. Both O3-oxidation and •OH oxidation were important to the promotion with the contributions being 35.8%-45.9% and 54.1%-64.2%, respectively. The operational and water matric conditions influenced the oxidation performance via both O3 oxidation and •OH oxidation, which is reported for the first time. In general, the ceramic membrane offered a low-energy approach of ozone micro-bubble aeration for efficient pollutant degradation. The O3 oxidation and •OH oxidation were proportionally promoted by ozone micro-bubble due to O3 transfer enhancement. Thus, the promotive mechanism can be interpreted as the synchronous enchantment on ozone exposure and •OH exposure for the first time.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Oxirredução , Ozônio/química , Ultrafiltração/métodos , Poluentes Químicos da Água/química , Purificação da Água/métodos
18.
Water Res ; 235: 119862, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36924555

RESUMO

Pharmaceutical and personal care products (PPCPs) are frequently detected in water bodies and have potential risks to human health and the ecosystem. The degradation of eight structurally diverse PPCPs by ammonia/chlorine was systematically investigated in this study. Compared with chlorination, ammonia/chlorine markedly enhanced PPCP degradation, and the degradation efficiencies of most PPCPs were greater than 70%. Tert-butanol strongly suppressed PPCP degradation, while bicarbonate suppressed it moderately, suggesting the importance of ClO⋅and ⋅CO3- in PPCP degradation. In neutral conditions, PPCP degradation was mainly attributed to ⋅OH, with its contribution ranging from 74% to 100% at a Cl2/N molar ratio of 1.6. Regarding the effect of natural organic matter, atrazine and primidone were inhibited the most, while carbamazepine (CBZ), metoprolol (MTP), and atenolol (ATN) were affected the least. PPCP degradation was suppressed in reclaimed water; the degradation of CBZ, MTP, and ATN was suppressed the least, with degradation efficiencies of 77.1%-85.4%, 75.1%-77.1%, and 64.6%-68.8%, respectively. Furthermore, compared with chlorination, fewer volatile halogenated byproducts were formed in reclaimed water when using the ammonia/chlorine process, and the concentration of each byproduct formed by ammonia/chlorine was less than 10 µg/L. This study suggests the feasibility of using ammonia/chlorine oxidation to degrade PPCPs in reclaimed water.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Humanos , Cloro , Amônia , Ecossistema , Raios Ultravioleta , Água , Carbamazepina , Cloretos
19.
Environ Sci Technol ; 57(8): 3311-3322, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36787277

RESUMO

Byproduct formation (chlorate, bromate, organic halogen, etc.) during sulfate radical (SO4•-)-based processes like ultraviolet/peroxymonosulfate (UV/PMS) has aroused widespread concern. However, hypohalous acid (HOCl and HOBr) can form via two-electron transfer directly from PMS, thus leading to the formation of organic halogenated byproducts as well. This study found both PMS alone and UV/PMS can increase the toxicity to mammalian cells of wastewater, while the UV/H2O2 decreased the toxicity. Cytotoxicity of two wastewater samples increased from 5.6-8.3 to 15.7-29.9 mg-phenol/L, and genotoxicity increased from 2.8-3.1 to 5.8-12.8 µg 4-NQO/L after PMS treatment because of organic halogen formation. Organic halogen formation from bromide rather than chloride was found to dominate the toxicity increase. The SO4•--based process UV/PMS led to the formation of both organic halogen and inorganic bromate and chlorate. However, because of the very low concentration (<20 µg/L) and relatively low toxicity of bromate and chlorate, contributions of inorganic byproducts to toxicity increase were negligible. PMS would not form chlorate and bromate, but it generated a higher concentration of total organic halogen, thus leading to a more toxic treated wastewater than UV/PMS. UV/PMS formed less organic halogen and toxicity because of the destruction of byproducts by UV irradiation and the removal of byproduct precursors. Currently, many studies focused on the byproducts bromate and chlorate during SO4•--based oxidation processes. This work revealed that the oxidant PMS even needs more attention because it caused higher toxicity due to more organic halogen formation.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Animais , Oxidantes , Peróxido de Hidrogênio , Bromatos/toxicidade , Águas Residuárias , Cloratos , Poluentes Químicos da Água/análise , Peróxidos , Oxirredução , Halogênios , Mamíferos
20.
J Hazard Mater ; 446: 130660, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36580774

RESUMO

Vacuum-UV (VUV) (wavelength 185 nm)/ UV (wavelength 254 nm) are applied to improve performances of UV-based advanced oxidation processes. However, the improvements were strongly affected by water depth because of poor VUV transmittance in water. In this study, VUV/UV and peroxydisulfate (PDS) were used to degrade carbamazepine. More SO4•- oxidation occurred in VUV/UV/PDS than VUV/UV with similar •OH oxidation occurring. The additional SO4•- oxidation could be caused by VUV/PDS in superficial water or UV/PDS in deeper water. The synergistic factor for VUV/UV/PDS processes relative to VUV/UV and UV/PDS processes was 1.32. VUV/UV/PDS performances were affected by competition for photon absorption by dissolved organic matter (32-58 % inhibition), radical quenching by CO32-/HCO3- and NO3-, and conversion of •OH and SO4•- into reactive chlorine species by Cl-. Radical probe experiments and steady-state kinetic modeling simulations indicated that 34 %, 25 %, and 40 % of carbamazepine degradation occurring in 2-cm-deep bulk solution was due to •OH oxidation through VUV/H2O, SO4•- oxidation through VUV/PDS, and SO4•- oxidation through UV/PDS, respectively. Contribution of VUV-driven processes decreased with increasing water depth and became equivalent to contribution of 3.5-cm-deep UV-driven processes, which indicated the importance of optimizing water depth in VUV/UV-advanced oxidation process reactors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...