Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38952237

RESUMO

Electrocatalytic water splitting is a promising production method for green hydrogen; however, its practical application is limited by the lack of robust catalysts for the cathode hydrogen evolution reaction (HER). Recently, the use of Ru in electrocatalytic HER has become a research hotspot because Ru has a metal-hydrogen bond strength similar to that of Pt - known for its excellent HER activity - but has a lower cost than Pt. Numerous modification strategies are available to further improve the HER activity of metal Ru such as vulcanisation, phosphating and atomisation. The atomisation strategy has attracted much attention owing to its extremely high Ru atomic utilisation efficiency and tunable electronic structures. However, isolated studies could not effectively address the bottlenecks. Therefore, to promote the effective exploration of Ru-based single-atom catalysts and clarify the research status in this field, studies on related topics (e.g. Ru single-atom catalysts, Ru dual-atom catalysts, composite catalysts containing single-atom Ru and Ru nanoparticles) have been systematically and briefly summarised herein. Finally, the research challenges and prospects of Ru-based single-atom catalysts in the HER field have been discussed, which may provide valuable insights for further research.

2.
Heliyon ; 9(8): e18764, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37576285

RESUMO

Progression to a severe condition remains a major risk factor for the COVID-19 mortality. Robust models that predict the onset of severe COVID-19 are urgently required to support sensitive decisions regarding patients and their treatments. In this study, we developed a multivariate survival model based on early-stage CT images and other physiological indicators and biomarkers using artificial-intelligence analysis to assess the risk of severe COVID-19 onset. We retrospectively enrolled 338 adult patients admitted to a hospital in China (severity rate, 31.9%; mortality rate, 0.9%). The physiological and pathological characteristics of the patients with severe and non-severe outcomes were compared. Age, body mass index, fever symptoms upon admission, coexisting hypertension, and diabetes were the risk factors for severe progression. Compared with the non-severe group, the severe group demonstrated abnormalities in biomarkers indicating organ function, inflammatory responses, blood oxygen, and coagulation function at an early stage. In addition, by integrating the intuitive CT images, the multivariable survival model showed significantly improved performance in predicting the onset of severe disease (mean time-dependent area under the curve = 0.880). Multivariate survival models based on early-stage CT images and other physiological indicators and biomarkers have shown high potential for predicting the onset of severe COVID-19.

3.
Chem Sci ; 14(17): 4620-4626, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37152263

RESUMO

Single-atom Cu supported on CeO x nanorod catalysts (Cu1/CeO x ) have been synthesized through the anchoring of copper by terminal hydroxyl groups on the CeO x surface. The oxygen defect characteristics of the CeO x nanorods promote electron transfer between Cu and CeO x through a Ce-O-Cu interface, which realizes flexible electronic regulation of the Cu sites. Single-atom Cu species with an oxidation state of between +1 and +2 were formed, which was confirmed by X-ray photoelectron spectroscopy, X-ray fine structure spectroscopy, and electron paramagnetic resonance spectroscopy. Cu1/CeO x emerged as a catalyst with advanced catalytic performance for elemental sulfur in S-arylation using aryl iodides, achieving 97.1% iodobenzene conversion and 94.8% selectivity toward diphenyl disulfide. The substituted iodobenzene with different electronic or steric groups successfully realized S-arylation and produced the corresponding diaryl disulfides with high selectivity. The fully exposed single-atom Cu with flexible electronic characteristics successively realized oxidative addition or coordination of multiple substrates, making it possible to obtain diaryl disulfide with high selectivity.

4.
J Colloid Interface Sci ; 644: 238-245, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37119641

RESUMO

Small size ruthenium (Ru) nanoparticles have shown remarkable potential for electrocatalytic hydrogen evolution reaction (HER). Nevertheless, the complicated preparation and relatively low activity of small size Ru nanoparticles are two key challenges. In this work, carbon nanotubes supported Ru nanoparticles catalysts (cnts@NC-Ru t °C) with different sizes were prepared via using the combination of L-3,4-dihydroxyphenylalanine (l-dopa) self-polymerization oxidation reaction and different high temperature annealing to study the variation of particle activity with size. Electrochemical test results showed that the optimized cnts@NC-Ru 700 °C catalyst exhibited a very low overpotential at 10 mA/cm2 (21 mV) and tafel slope of 34.93 mV/dec when the mass loading of precious metal per unit area was merely 12.11 µg/cm2 that surpassed most recently reported high-performance Ru based catalyst. The results of density functional theory (DFT) calculation showed that small Ru nanoparticles had abundant active sites, and the H2O dissociation on small Ru nanoparticles (110) surface is quite easy than other surfaces, while (111) surface of small Ru nanoparticles is beneficial for Tafel step of HER. The synergy between (110) and (111) surfaces on the Ru cluster contributes to its outstanding HER performance. This study provides a novel design idea in promoting the preparation method and uncovering the reason of high activity of small size Ru nanoparticles.

5.
Dalton Trans ; 51(48): 18473-18479, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36421021

RESUMO

The development and transformation of biomass-derived platform compounds is a sustainable way to deal with the fossil fuel crisis. 5-Hydroxymethylfurfural (HMF) can be reduced or oxidized to produce many high-value compounds; however, it is challenging to effectively produce 2,5-diformylfuran (DFF) due to overoxidation. In this work, a carbon-doped V2O5 (C-V2O5) material was obtained through pyrolysis of MIL-47(V) nanorods, a typical metal-organic framework material. The X-ray diffraction patterns and X-ray photoelectron spectra showed that the graphitized carbon species were incorporated in C-V2O5. High-efficiency HMF oxidation, high specific selectivity for DFF and excellent recycling could be achieved with the C-V2O5 catalyst. Fourier-transform infrared spectroscopy combined with density functional theory (DFT) calculation revealed that graphitized carbon weakens the VO bond and promotes the formation of oxygen vacancies in C-V2O5, thus improving the catalytic activity in the oxidation of furfuryl alcohols. The V4+ induced by oxygen vacancies will be oxidized by O2 to form V5+, so that the cycle can be realized. It exhibits remarkable selectivity in the oxidation of different alcohols produced from biomass based on the relatively constant active sites in C-V2O5.


Assuntos
Carbono , Óxidos , Furaldeído/química , Vanádio , Oxigênio
6.
ACS Omega ; 7(42): 37499-37508, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36312431

RESUMO

Emerging infectious diseases have brought a huge impact on human society in recent years. The outbreak of Zika virus (ZIKV) in the Americas resulted in a large number of babies born with microcephaly. More seriously, the Coronavirus Disease 2019 (COVID-19) was globally spread and caused immeasurable damages. Thus, the monitoring of highly pathogenic viruses is important to prevent and control emerging infectious diseases. Herein, a dendritic polymer probe-amplified ECL-scan imaging system was constructed to realize trace analysis of viral emerging infectious diseases. A dendritic polymer probe was employed as the efficient signal emitter component that could generate an amplified ECL signal on the integrated chip, and the signal was detected by a single-photon level charge coupled device-based ECL-scan imaging system. With this strategy, the ZIKV in a complex system of blood, urine, and saliva was detected. The results indicated that a high sensitivity of 50 copies and superior specificity were achieved. Furthermore, this strategy realized highly sensitive detection (10 copies) of the S and N protein gene sequence of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-Cov2) and spiked pseudovirus samples. Thus, the dendritic polymer probe-amplified ECL-scan imaging system suitably met the strict clinical requirements for trace analysis of an emerging virus, and thus has the potential to serve as a paradigm for monitoring emerging infectious diseases.

7.
Inorg Chem ; 61(28): 11011-11021, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35795917

RESUMO

Ruthenium, which is relatively cheap in precious metals, has become a popular alternative for a hydrogen evolution reaction (HER) catalyst because of its corrosion resistance and appropriate metal-H bond strength. Convenient synthesis and active site regulation are conducive to stimulating the excellent catalytic performance of Ru as much as possible. Herein, using the mature mesoporous nitrogen-doped carbon material as the support, the catalytic materials containing both single atom Ru and Ru nanoparticles were synthesized by impregnation using the solid-phase reduction method. The effect of reduction temperature on the dispersion state and electronic structure of Ru species has been fully studied using electronic and spectroscopic characterizations. The sample reduced at 300 °C has excellent HER activity with overpotentials of 10.8 and 53.8 mV to deliver 10 mA/cm2 in alkaline and acidic media, respectively, which is among the best activities in the reported results. Electrochemical impedance analysis shows that the reduction temperature has a great influence on the number of active sites and charge transfer impedance of the catalyst.

8.
Front Bioeng Biotechnol ; 10: 940511, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875483

RESUMO

Zika virus (ZIKV) is a re-emerging flavivirus that leads to devastating consequences for fetal development. It is crucial to visualize the pathogenicity activities of ZIKV ranging from infection pathways to immunity processes, but the accurate labeling of ZIKV remains challenging due to the lack of a reliable labeling technique. We introduce the photo-activated bio-orthogonal cycloaddition to construct a fluorogenic probe for the labeling and visualizing of ZIKV. Via a simple UV photoirradiation, the fluorogenic probes could be effectively labeled on the ZIKV. We demonstrated that it can be used for investigating the interaction between ZIKV and diverse cells and avoiding the autofluorescence phenomenon in traditional immunofluorescence assay. Thus, this bioorthogonal-enabled labeling strategy can serve as a promising approach to monitor and understand the interaction between the ZIKV and host cells.

9.
ACS Appl Mater Interfaces ; 14(13): 15250-15258, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35333511

RESUMO

Hydrogen production by water splitting and seawater electrolysis is a promising alternative to develop clean hydrogen energy. The construction of high-efficiency and durable electrocatalysts for the hydrogen evolution reaction (HER) in a wide pH range and seawater is critical to overcoming the sluggish kinetic process. Herein, we develop an efficient catalytic material composed of a single-atom Ru-N4 site and Ru nanoparticles anchored on nitrogen-doped carbon (Ru1+NPs/N-C) through the coordination-pyrolysis strategy of the melamine formaldehyde resin. The Ru1+NPs/N-C catalyst shows outstanding HER activity with the smallest overpotentials, the lowest Tafel slopes, the highest mass activity and turnover frequency, as well as excellent stability in both acidic and alkaline media. Moreover, Ru1+NPs/N-C shows comparable hydrogen production performance and a higher faradic efficiency to 20% Pt/C in natural seawater and artificial simulated seawater. Theoretical calculations demonstrate that the strong synergistic effects between the Ru-N4 site and Ru nanoparticles modify the electronic structure to accelerate the HER kinetics. Ru nanoparticles can effectively realize dissociation of H2O to generate adsorbed hydrogen and also promote the single-atom Ru-N4 site to combine adsorbed hydrogen to H2 and desorption. This work provides a new perspective for designing high-efficiency hydrogen production electrocatalysts for large-scale seawater electrolysis.

10.
Dalton Trans ; 50(48): 18061-18068, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34842870

RESUMO

Novel hexagonal α-cobalt hydroxide nanosheets are synthesized through a 2-methylimidazole-induced hydrolysis strategy with cetyltrimethylammonium bromide (CTAB) as a surfactant. The weak alkaline environment provides favorable conditions for the formation of metastable α-Co(OH)2, while the same raw material will produce ß-Co(OH)2 when a strong alkali solution is used. CTAB plays a vital role not only in hexagonal oriented growth, but also in the formation of the hydrotalcite-like structure of α-Co(OH)2 with high crystallinity. The crystallinity of both α- and ß-Co(OH)2 is very poor without CTAB as a surfactant. The Co in this Co(OH)2-x layer presents most of the CoII and a small part of the CoIII, and the interlayer nitrate anion balances the positive charge of the host layer. The redox function produced by the CoII and CoIII of α-Co(OH)2 together with the large layer spacing jointly promotes the electron and mass transfer. The use of hydrazine hydrate for transfer hydrogenation involves the transport of protons and electrons produced by decomposition, and the rapid transport is bound to be conducive to the reduction process. Nitro compounds with varieties of functional groups can be smoothly reduced to the corresponding amines with high selectivity, when α-Co(OH)2 was used as a catalyst under mild conditions.

11.
Anal Chim Acta ; 787: 64-70, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23830422

RESUMO

The present paper has focused on the potential application of the bifunctional polydopamine@Fe3O4 core-shell nanoparticles for development of a simple, stable and highly selective electrochemical method for metal ions monitoring in real samples. The electrochemical method is based on electrochemical preconcentration/reduction of metal ions onto a polydopamine@Fe3O4 modified magnetic glassy carbon electrode at -1.1 V (versus SCE) in 0.1 M pH 5.0 acetate solution containing Pb(2+) and Cd(2+) during 160 s, followed by subsequent anodic stripping. The proposed method has been demonstrated highly selective and sensitive detection of Pb(2+) and Cd(2+), with the calculated detection limits of 1.4×10(-11)M and 9.2×10(-11) M. Under the optimized conditions, the square wave anodic stripping voltammetry response of the modified electrode to Pb(2+) (or Cd(2+)) shows a linear concentration range of 5.0-600 nM (or 20-590 nM) with a correlation coefficient of 0.997 (or 0.994). Further, the proposed method has been performed to successfully detect Pb(2+) and Cd(2+) in aqueous effluent.


Assuntos
Cádmio/química , Técnicas Eletroquímicas/métodos , Compostos Ferrosos/química , Indóis/química , Chumbo/química , Nanopartículas de Magnetita/química , Polímeros/química , Materiais Biocompatíveis/química , Cádmio/análise , Chumbo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...