Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 406: 130959, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876286

RESUMO

Despite the increased research efforts aimed at understanding iron-based conductive materials (CMs) for facilitating chain elongation (CE) to produce medium chain fatty acids (MCFAs), the impact of these materials on microbial community functions and the adaptation mechanisms to their biotoxicity remain unclear. This study found that the supply of zero-valent iron (ZVI) and magnetite enhanced the MCFAs carbon-flow distribution by 26 % and 52 %, respectively. Metagenomic analysis revealed the upregulation of fatty acid metabolism, pyruvate metabolism and ABC transporters with ZVI and magnetite. The predominant functional microorganisms were Massilibacterium and Tidjanibacter with ZVI, and were Petrimonas and Candidatus_Microthrix with magnetite. Furthermore, it was demonstrated that CE microorganisms respond and adapt to the biotoxicity of iron-based CMs by adjusting Two-component system and Quorum sensing for the first time. In summary, this study provided a new deep-insight on the feedback mechanisms of CE microorganisms on iron-based CMs.


Assuntos
Ferro , Ferro/farmacologia , Ferro/metabolismo , Adaptação Fisiológica/efeitos dos fármacos , Ácidos Graxos/metabolismo , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Óxido Ferroso-Férrico/química , Percepção de Quorum/efeitos dos fármacos
2.
Bioresour Technol ; 406: 130958, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876284

RESUMO

To address the environmental hazards posed by high-yield soybean dreg (SD), a high-value strategy is firstly proposed by synthesizing caproate through chain elongation (CE). Optimized conditions for lactate-rich broth as intermediate, utilizing 50 % inoculum ratio, 40 g/L substrate concentration, and pH 5, resulting in 2.05 g/L caproate from direct fermentation. Leveraging lactate-rich broth supplemented with ethanol, caproate was optimized to 2.76 g/L under a refined electron donor to acceptor of 2:1. Furthermore, incorporating 20 g/L biochar elevated caproate production to 3.05 g/L and significantly shortened the lag phase. Mechanistic insights revealed that biochar's surface-existed quinone and hydroquinone groups exhibit potent redox characteristics, thereby facilitating electron transfer. Moreover, biochar up-regulated the abundance of key genes involved in CE process (especially fatty acids biosynthesis pathway), also enriching Lysinibacillus and Pseudomonas as an unrecognized cooperation to CE. This study paves a way for sustainable development of SD by upgrading to caproate.


Assuntos
Carvão Vegetal , Glycine max , Ácido Láctico , Glycine max/metabolismo , Carvão Vegetal/química , Ácido Láctico/metabolismo , Fermentação
3.
J Hazard Mater ; 459: 132054, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37473569

RESUMO

Sulfate radical-based advanced oxidation processes (AOPs) combined biological system was a promising technology for treating antibiotic wastewater. However, how pretreatment influence antibiotic resistance genes (ARGs) propagation remains largely elusive, especially the produced by-products (antibiotic residues and sulfate) are often ignored. Herein, we investigated the effects of zero valent iron/persulfate pretreatment on ARGs in bioreactors treating sulfadiazine wastewater. Results showed absolute and relative abundance of ARGs reduced by 59.8%- 81.9% and 9.1%- 52.9% after pretreatments. The effect of 90-min pretreatment was better than that of the 30-min. The ARGs reduction was due to decreased antibiotic residues and stimulated sulfate assimilation. Reduced antibiotic residues was a major factor in ARGs attenuation, which could suppress oxidative stress, inhibit mobile genetic elements emergence and resistant strains proliferation. The presence of sulfate in influent supplemented microbial sulfur sources and facilitated the in-situ synthesis of antioxidant cysteine through sulfate assimilation, which drove ARGs attenuation by alleviating oxidative stress. This is the first detailed analysis about the regulatory mechanism of how sulfate radical-based AOPs mediate in ARGs attenuation, which is expected to provide theoretical basis for solving concerns about by-products and developing practical methods to hinder ARGs propagation.


Assuntos
Genes Bacterianos , Águas Residuárias , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Sulfatos/farmacologia , Reatores Biológicos , Óxidos de Enxofre/farmacologia
4.
RSC Adv ; 8(29): 16178-16186, 2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35542191

RESUMO

In order to understand the inhibitory mechanism of metabolic uncoupler in biofilm, this study investigated the effect of TCS on B. subtilis biofilm formation, flocculability, surface characteristics and thermodynamic properties. An optimal concentration of TCS, a metabolic uncoupler, was observed to substantially inhibit biofilm formation and the secretion of extracellular polymeric substances (EPS). The effect of TCS on the zeta potential and flocculability of bacterial suspension implied the addition of 100 µg L-1 TCS increased the net negative charge of cell surface which induced the reduction of B. subtilis flocculability. Meanwhile, the effects of TCS on bacterial surfacial thermodynamic properties were analyzed by the Derjaguin-Landau-Verwey-Overbeek (DLVO) and extend DLVO (XDLVO) theories. As DLVO and XDLVO predicted, the primary energy barrier between bacterial cells incubated with 100 µg L-1 TCS were increased compared to that of control, indicating that B. subtilis incubated with 100 µg L-1 TCS must consume more energy to aggregate or form biofilm.

5.
Bioresour Technol ; 239: 518-522, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28571628

RESUMO

A new pretreatment method based on tetrakis hydroxymethyl phosphonium sulfate (THPS) biocide was tried to enhance sludge disintegration, and improved sludge biodegradability and subsequent volatile fatty acid (VFA) production. Sludge activity decreased to less than 10% after 2 days pretreatment using 20mg/g-TSS THPS, which also obviously destroyed EPS and cell membrane, and dissolved more biodegradable substances (48.8%) than raw sludge (19.7%). Moreover, 20mg/g-TSS THPS pretreatment shortened fermentation time to 4days and improved VFA production to 2778mg COD/L (4.35 times than that in control). Therein, the sum of n-butyric, n-valeric and iso-valeric acids unexpectedly accounted for 60.5% of total VFA (only 20.1% of that in control). The more high molecular weight VFAs (C4-C5) than low molecular VFAs (C2-C3) resulted from THPS pretreatment benefited to subsequent medium-chain volatile acids (C6-C12) generation to realize the separation and recovery of organic carbon more efficiently.


Assuntos
Ácidos Graxos Voláteis , Compostos Organofosforados , Esgotos , Fermentação , Concentração de Íons de Hidrogênio
6.
Bioresour Technol ; 224: 727-732, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27865665

RESUMO

VFA production from excess sludge (ES) was greatly enhanced by a low-cost and high-efficient treatment: 0.67mg/L free nitrous acid (FNA) pretreatment combined with 0.04g/g TSS rhamnolipid (RL) addition (FNA+RL), which significantly shortened fermentation time to 3days and increased VFA production to 352.26mgCOD/g VSS (5.42 times higher than raw ES). Propionic and acetic acids were the two leading components (71.86% of the total VFA). Mechanism investigation manifested FNA+RL improved the biodegradability of ES, achieved positive synergetic effect on solubilization, hydrolysis and acidification efficiencies, and inhibited methanation. Microbial community distribution further explained the above phenomena. The bacteria related to polysaccharides/protein utilization and VFA generation, including Clostridium, Megasphaera and Proteiniborus, were mainly observed in FNA+RL, whereas gas-forming bacteria Anaerolineae and acid-consuming bacteria Proteobacteria were assuredly suppressed. Besides, Propionibacterineae associated with propionic acid generation was exclusively enriched in sole RL and FNA+RL.


Assuntos
Ácidos Graxos Voláteis/biossíntese , Glicolipídeos/química , Consórcios Microbianos/fisiologia , Ácido Nitroso/química , Esgotos , Bactérias/metabolismo , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio , Biotecnologia/economia , Biotecnologia/métodos , Fermentação , Hidrólise , Propionatos/metabolismo , Proteínas/metabolismo , Esgotos/microbiologia , Solubilidade , Eliminação de Resíduos Líquidos/métodos
7.
Bioresour Technol ; 221: 284-290, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27643737

RESUMO

The aim of this study is to evaluate the feasibility of using lipid-accumulating microalgae to remove cephalosporin antibiotics 7-amino cephalosporanic acid (7-ACA) from wastewater with the additional benefit of biofuels production. Three isolated microalgal strains (namely, Chlorella sp. Cha-01, Chlamydomonas sp. Tai-03 and Mychonastes sp. YL-02) were cultivated under 7-ACA stress and their biomass productivity, lipid production and N-NO3- consumption were monitored. It was found that 7-ACA had slight inhibition effects on the microalgal growth at the ratio of 12.0% (Cha-01), 9.6% (YL-02), 11.7% (Tai-03). However, lipid accumulation in the three microalgae was not influenced by the presence of 7-ACA. The investigation on the 7-ACA removal mechanisms during microalgal growth shows that 7-ACA was mainly removed by microalgae adsorption as well as hydrolysis and photolysis reactions. This study demonstrates that using microalgae to treat antibiotic-containing wastewater is promising due to the potential of simultaneous antibiotic removal and biofuel production.


Assuntos
Cefalosporinas/isolamento & purificação , Lipídeos/biossíntese , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Águas Residuárias/química , Biocombustíveis , Biomassa , Chlamydomonas/crescimento & desenvolvimento , Chlamydomonas/metabolismo , Chlorella/crescimento & desenvolvimento , Chlorella/metabolismo , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos
8.
Bioresour Technol ; 216: 653-60, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27289056

RESUMO

The study provided a cost-effective and high-efficiency volatile fatty acid (VFA) production strategy by co-fermentation of food waste (FW) and excess sludge (ES) without artificial pH control. VFA production of 867.42mg COD/g-VS was obtained under the optimized condition: FW/ES 5, solid retention time 7d, organic loading rate 9g VS/L-d and temperature 40°C. Mechanism exploration revealed that the holistic biodegradability of substrate was greatly enhanced, and proper pH range (5.2-6.4) was formed by the high buffering capacity of the co-fermentation system itself, which effectively enhanced hydrolysis yield (63.04%) and acidification yield (83.46%) and inhibited methanogenesis. Moreover, microbial community analysis manifested that co-fermentation raised the relative abundances of hydrolytic and acidogenic bacteria including Clostridium, Sporanaerobacter, Tissierella and Bacillus, but suppressed the methanogen Anaerolineae, which also facilitated high VFA production. These results were of great guiding significance aiming for VFA recovery from FW and ES in large-scale.


Assuntos
Ácidos Graxos Voláteis/metabolismo , Alimentos , Esgotos/microbiologia , Gerenciamento de Resíduos/métodos , Amônia/metabolismo , Bactérias Anaeróbias/metabolismo , Clostridium/metabolismo , Fermentação , Concentração de Íons de Hidrogênio , Hidrólise , Metano/biossíntese , Consórcios Microbianos , Temperatura
9.
Bioresour Technol ; 177: 194-203, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25490102

RESUMO

An ozone/ultrasound lysis-cryptic growth technology combining a continuous flow anaerobic-anoxic-microaerobic-aerobic (AAMA+O3/US) system was investigated. Techno-economic evaluation and sludge lyses return ratio (r) optimization of this AAMA+O3/US system were systematically and comprehensively discussed. Economic assessment demonstrated that this AAMA+O3/US system with r of 30% (AAMA+O3/US2# system) was more economically feasible that can give a 14.04% saving of costs. In addition to economic benefits, a 55.08% reduction in sludge production, and respective 21.17% and 5.45% increases in TN and TP removal efficiencies were observed in this AAMA+O3/US2# system. Considering the process performances and economic benefits, r of 30% in AAMA+O3/US2# system was recommended. Excitation-emission matrix and Fourier transform infrared spectra analyses also proved that less refractory soluble microbial products were generated from AAMA+O3/US2# system. Improvement in 2,3,5-triphenyltetrazolium chloride electron transport system (TTC-ETS) activity in AAMA+O3/US2# further indicated that a lower sludge lyses return ratio stimulated the microbial activity.


Assuntos
Compostos Orgânicos/isolamento & purificação , Ozônio/química , Esgotos/química , Ultrassom/métodos , Eliminação de Resíduos Líquidos/economia , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/isolamento & purificação , Aerobiose , Compostos de Amônio/isolamento & purificação , Anaerobiose , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio , Transporte de Elétrons , Nitrogênio/isolamento & purificação , Fósforo/isolamento & purificação , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier , Sais de Tetrazólio/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...