Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 20(1): 516, 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33183241

RESUMO

BACKGROUND: Crown gall disease, caused by the pathogenic bacterium Agrobacterium tumefaciens, is responsible for extensive economic losses in orchards. Cherry rootstock 'CDR-1' (Prunus mahaleb) shows high resistance but the mechanism remains unclear. Here, we examined the morphology of pathogen-infected root neck surface, determined the activity of 10 defense-related enzymes and the content of salicylic acid (SA) and jasmonic acid (JA), and also applied transcriptome analysis, transient expression and transgenic verification to explore the crown gall resistance genes in 'CDR-1' plants. RESULTS: In our study, peroxidase increased in the first 10 days, while phenylalanine ammonialyase and lipoxygenase increased in the first 15 days post-infection. Four key enzymes in the AsA-GSH cycle also responded, to a certain extent; although JA content increased significantly after the treatment, the SA content did not. In a follow-up transcriptome analysis, the differentially expressed genes Pm4CL2, PmCYP450, PmHCT1, PmHCT2, and PmCAD were up-regulated. Based on the above results, we focused on the lignin biosynthetic pathway, and further measured lignin content, and found it increased significantly. The Pm4CL2 gene was used to conduct transient expression and transgenic experiments to verify its function in crown gall disease resistance. It showed the relative expression of the treatment group was almost 14-fold that of the control group at 12 h post-treatment. After the infection treatment, clear signs of resistance were found in the transgenic lines; this indicated that under the higher expression level and earlier activation of Pm4CL2, plant resistance was enhanced. CONCLUSIONS: The crown gall resistance of 'CDR-1' is likely related to the lignin biosynthetic pathway, in which Pm4CL2 functions crucially during the plant defense response to the pathogen A. tumefaciens. The results thus offer novel insights into the defense responses and resistance mechanism of cherry rootstock 'CDR-1' against crown gall disease.


Assuntos
Agrobacterium tumefaciens/patogenicidade , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Prunus/genética , Prunus/microbiologia , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plantas Geneticamente Modificadas , Ácido Salicílico/metabolismo
2.
Plants (Basel) ; 8(3)2019 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-30884789

RESUMO

Bacterial contamination is a major and constant threat to the establishment and subculture of in vitro plant culture. In this study, we used a slightly modified qualitative disk diffusion method to screen optimal antibiotics to control the growth of bacterial contaminants isolated from explants of cherry rootstock 'Gisela 6'. Bacterial susceptibility to eight different antibiotics was tested. The results showed that tetracycline was the most effective antibiotic for controlling bacterial growth; cefotaxime, carbenicillin, kanamycin, and streptomycin were less effective, whereas ampicillin, penicillin, and cefazolin did not inhibit growth of the isolated bacteria. Using the quantitative E test, the minimal inhibitory concentration (MIC) of tetracycline was determined to be 1.0 µg mL-1. We also measured the Fv/Fm values, chlorophyll content, and enzymatic activity of superoxide dismutase and peroxidase to explore the effect of different tetracycline concentrations, 0, 0.064, 0.5, 1.0, 16, and 256 µg mL-1, on the growth of bacteria and explants over 30 days. Results indicated that 1.0 µg mL-1 tetracycline was effective in restricting bacterial growth, with non-significant negative effects on explants at low concentrations, but were enhanced negative effects at high concentrations. The application of the disk diffusion method and E test enabled the identification of an antibiotic and its MIC value effective for eliminating bacterial contaminants while causing minimal damage to explants, indicating a high potential of these methods to control bacterial contaminants in in vitro plant culture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...