Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 121(8): 1493-1501, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35276132

RESUMO

The DNA damage response is a highly orchestrated process. The involvement of the DNA damage response factors in DNA damage response depends on their biochemical reactions with each other and with chromatin. Using online live-cell imaging combined with heavy ion microbeam irradiation, we studied the response of the scaffold protein X-ray repair cross-complementary protein 1 (XRCC1) at the localized DNA damage in charged particle irradiated HT1080 cells expressing XRCC1-tagged RFP. The results showed that XRCC1 was recruited to the DNA damage with ultrafast kinetics in a poly ADP-ribose polymerase-dependent manner. The consecutive reaction model well explained the response of XRCC1 at ion hits, and we found that the XRCC1 recruitment was faster and dissociation was slower in the G2 phase than those in the G1 phase. The fractionated irradiation of the same cells resulted in accelerated dissociation at the previous damage sites, and the dissociated XRCC1 immediately recycled with a higher recruitment efficiency. Our data revealed XRCC1's new rescue mechanism and its high turnover in DNA damage response, which benefits our understanding of the biochemical mechanism in DNA damage response.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Raios X , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo
3.
Nano Lett ; 21(6): 2390-2396, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33683892

RESUMO

In this work, we demonstrate a process having the capability to realize single-digit nanometer lithography using single heavy ions. By adopting 2.15 GeV 86Kr26+ ions as the exposure source and hydrogen silsesquioxane (HSQ) as a negative-tone inorganic resist, ultrahigh-aspect-ratio nanofilaments with sub-5 nm feature size, following the trajectory of single heavy ions, were reliably obtained. Control experiments and simulation analysis indicate that the high-resolution capabilities of both HSQ resist and the heavy ions contribute the sub-5 nm fabrication result. Our work on the one hand provides a robust evidence that single heavy ions have the potential for single-digit nanometer lithography and on the other hand proves the capability of inorganic resists for reliable sub-5 nm patterning. Along with the further development of heavy-ion technology, their ultimate patterning resolution is supposed to be more accessible for device prototyping and resist evaluation at the single-digit nanometer scale.

4.
DNA Repair (Amst) ; 96: 102974, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32998084

RESUMO

The dynamic structure of nuclear chromatin and its regulation in the formation of repair complex is essential in DNA damage response and repair. Using single molecule localization microscopy STORM this work discovered that the nuclear chromatin organization was relaxed from 200 to 400 nm thick irregular frame and remodeled to dispersed sub-100 nm structure in HeLa cells after X-ray irradiation. The DSB repair factors (γ-H2AX, MDC1, 53BP1) showed distribution as microscale-colocalized and nanoscale interlaced substructure in the DSB repair complex. The dual-color nanoscopic imaging of γ-H2AX and chromatin at the DSB sites suggest that DNA damage response and repair cascade are chromatin structure-dependent and also partly dependent on the distance to the DSB sites. The sub-100 nm structure of fibers and nanoclusters of the relaxed nuclear chromatin and the DSB repair factors highly resembled the cross-section view of chromatin organization. These data demonstrated the polymorphic and dynamic behavior of the chromatin organization in vivo, and provided nanoscale insight into the interplay between chromatin remodeling and DNA damage response and DNA repair.


Assuntos
Montagem e Desmontagem da Cromatina , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Imagem Individual de Molécula , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Cromatina/efeitos da radiação , DNA/metabolismo , DNA/efeitos da radiação , Células HeLa , Histonas/metabolismo , Humanos , Radiação Ionizante , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
5.
ACS Appl Mater Interfaces ; 11(41): 38055-38060, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31553570

RESUMO

Rectified ion transport in nanochannels is the basis of ion channels in biological cells and has inspired emerging nanochannel applications in ion separation, Coulter counters, and biomolecule detection and nanochannel energy harvesters. In this work we fabricated a polyethylene terephthalate (PET) conical nanochannel using latent ion track etching technique and then systematically studied the ion transport and influence of cation species on the nanochannel surface with cyclic I-V measurement. We discovered the electrical regulation of the reversible and irreversible modification of the nanochannel transportation by bivalent and trivalent cations, revealing the existence of the switching threshold voltage which can control the current rectification in bivalent solution. The proposed mechanism of the transport state transition in the PET nanochannel mimics behaviors of voltage-gated biological ion channels. These findings provide new insight into the understanding of the ion channel signaling and translocation control of charged particles in nanochannel applications.

6.
Rev Sci Instrum ; 87(3): 034301, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27036791

RESUMO

DNA strand breaks can lead to cell carcinogenesis or cell death if not repaired rapidly and efficiently. An online live cell imaging system was established at the high energy microbeam facility at the Institute of Modern Physics to study early and fast cellular response to DNA damage after high linear energy transfer ion radiation. The HT1080 cells expressing XRCC1-RFP were irradiated with single high energy nickel ions, and time-lapse images of the irradiated cells were obtained online. The live cell imaging analysis shows that strand-break repair protein XRCC1 was recruited to the ion hit position within 20 s in the cells and formed bright foci in the cell nucleus. The fast recruitment of XRCC1 at the ion hits reached a maximum at about 200 s post-irradiation and then was followed by a slower release into the nucleoplasm. The measured dual-exponential kinetics of XRCC1 protein are consistent with the proposed consecutive reaction model, and the measurements obtained that the reaction rate constant of the XRCC1 recruitment to DNA strand break is 1.2 × 10(-3) s(-1) and the reaction rate constant of the XRCC1 release from the break-XRCC1 complex is 1.2 × 10(-2) s(-1).


Assuntos
Imagem Molecular/métodos , Linhagem Celular Tumoral , Sobrevivência Celular , Proteínas de Ligação a DNA/metabolismo , Humanos , Cinética , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
7.
Rev Sci Instrum ; 84(5): 055113, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23742595

RESUMO

To study the radiation effect of cosmic heavy ions of low fluxes in electronics and living samples, a focusing heavy ion microbeam facility, for ions with energies of several MeV/u up to 100 MeV/u, was constructed in the Institute of Modern Physics of the Chinese Academy of Sciences. This facility has a vertical design and an experiment platform for both in-vacuum analysis and in-air irradiation. Recently, microbeam of (12)C(6+) with energy of 80.55 MeV/u was successfully achieved at this interdisciplinary microbeam facility with a full beam spot size of 3 µm × 5 µm on target in air. Different from ions with energy of several MeV/u, the very high ion energy of hundred MeV/u level induces problems in beam micro-collimation, online beam spot diagnosis, radiation protection, etc. This paper presents the microbeam setup, difficulties in microbeam formation, and the preliminary experiments performed with the facility.

8.
Bioelectromagnetics ; 32(2): 94-101, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21225886

RESUMO

The literature on the impact of strong static magnetic fields (SMF) on human health is vast and contradictory. The present study focused on the cellular effects of strong homogeneous SMF in human-hamster hybrid (A(L) ) cells, mitochondria-deficient (ρ(0) A(L) ) cells, and double-strand break (DSB) repair-deficient (XRS-5) cells. Adenosine triphosphate (ATP) content was significantly decreased in A(L) cells exposed to 8.5 Tesla (T) but not 1 or 4 T SMF for either 3 or 5 h. In addition, ATP content significantly decreased in the two deficient cell lines exposed to 8.5 T SMF for 3 h. With further incubation of 12 or 24 h without SMF exposure, ATP content could retrieve to the control level in the A(L) cells but not ρ(0) A(L) and XRS-5 cells. Under a fluorescence reader, the levels of reactive oxygen species (ROS) in the three cell lines were significantly increased by exposure to 8.5 T SMF for 3 h. Concurrent treatment with ROS inhibitor, DMSO, dramatically suppressed the ATP content in exposed A(L) cells. However, the CD59 mutation frequency and the cell cycle distribution were not significantly affected by exposure to 8.5 T SMF for 3 h. Our results indicated that the cellular ATP content was reduced by 8.5 T SMF for 3 h exposure, which was partially mediated by mitochondria and the DNA DSB repair process. Moreover, ROS were involved in the process of the cellular perturbations from the SMF.


Assuntos
Trifosfato de Adenosina/metabolismo , Magnetismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Antígenos CD59/genética , Células CHO , Cricetinae , Cricetulus , Dimetil Sulfóxido/farmacologia , Sequestradores de Radicais Livres/farmacologia , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...