Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Horiz ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953849

RESUMO

Inhibiting the adhesion and growth of marine microorganisms through photocatalysis is a potentially efficient and environmentally friendly antifouling strategy. However, the undesired "shading effect" caused by resin coatings and microbial deposition reduces the utilization of the catalysts and leads to a failure in the antifouling active substance on the coating surface. Here, we successfully developed a composite coating (DPC-x) combining g-C3N4 nanosheet (g-C-NS) photocatalysts with degradable green poly-Schiff base resins, which integrates the dual functions of enhanced dynamic self-renewal and photocatalytic antibacterial activities towards long-term anti-biofouling. The controllable and complete degradability of the poly-Schiff base polymer chains and the self-renewal mechanism of the DPC-x coating exposed the internal g-C-NS, which provided a constant stream of photocatalytic reactive interfaces for 100% utilization and release of the photocatalysts. g-C-NS were homogeneously dispersed in the degradable resin coating, significantly enhancing and adjusting the self-renewal rate of the poly-Schiff base resin coating in visible light. The degradation reaction rate of DPC-0.2 (20 wt% g-C-NS) was 40 times that of DPC, thus improving the capabilities of surface self-renewal and fouling-release. Due to the synergistic antifouling mechanism of the efficient antibacterial properties and the enhanced degradation/self-renewal, the antimicrobial rates of DPC and DPC-0.2 were 94.58% and 99.31% in the dark, and 98.2% and 99.87% in visible light. DPC-x has excellent all-weather antimicrobial efficacy and could offer a new perspective on eco-friendly marine antifouling strategies.

2.
Opt Express ; 31(6): 9448-9465, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-37157516

RESUMO

In digital holography, the coherent scattered light fields can be reconstructed volumetrically. By refocusing the fields to the sample planes, absorption and phase-shift profiles of sparsely distributed samples can be simultaneously inferred in 3D. This holographic advantage is highly useful for spectroscopic imaging of cold atomic samples. However, unlike e.g. biological samples or solid particles, the quasi-thermal atomic gases under laser-cooling are typically featureless without sharp boundaries, invalidating a class of standard numerical refocusing methods. Here, we extend the refocusing protocol based on the Gouy phase anomaly for small phase objects to free atomic samples. With a prior knowledge on a coherent spectral phase angle relation for cold atoms that is robust against probe condition variations, an "out-of-phase" response of the atomic sample can be reliably identified, which flips the sign during the numeric back-propagation across the sample plane to serve as the refocus criterion. Experimentally, we determine the sample plane of a laser-cooled 39K gas released from a microscopic dipole trap, with a δz ≈ 1 µm ≪ 2λp/NA2 axial resolution, with a NA=0.3 holographic microscope at λp = 770 nm probe wavelength.

3.
Phys Rev Lett ; 131(25): 253602, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38181370

RESUMO

The interaction between light and cold atoms is a complex phenomenon potentially featuring many-body resonant dipole interactions. A major obstacle toward exploring these quantum resources of the system is macroscopic light propagation effects, which not only limit the available time for the microscopic correlations to locally build up, but also create a directional, superradiant emission background whose variations can overwhelm the microscopic effects. In this Letter, we demonstrate a method to perform "background-free" detection of the microscopic optical dynamics in a laser-cooled atomic ensemble. This is made possible by transiently suppressing the macroscopic optical propagation over a substantial time, before a recall of superradiance that imprints the effect of the accumulated microscopic dynamics onto an efficiently detectable outgoing field. We apply this technique to unveil and precisely characterize a density-dependent, microscopic dipolar dephasing effect that generally limits the lifetime of optical spin-wave order in ensemble-based atom-light interfaces.

4.
Opt Express ; 30(15): 27780-27793, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-36236941

RESUMO

We propose a composite acousto-optical modulation (AOM) scheme for wide-band, efficient modulation of CW and pulsed lasers. We show that by adjusting the amplitudes and phases of weakly-driven daughter AOMs, diffraction beyond the Bragg condition can be achieved with exceptional efficiencies. Furthermore, by imaging pairs of AOMs with opposite directions of sound-wave propagation, high contrast switching of output orders can be achieved at the driving radio frequency (rf) limit, thereby enabling efficient bidirectional routing of a synchronized mode-locked laser. Here we demonstrate a simplest example of such scheme with a double-AOM setup for efficient diffraction across an octave of rf bandwidth, and for routing a mode-locked pulse train with up to frep = 400 MHz repetition rate. We discuss extension of the composite scheme toward multi-path routing and time-domain multiplexing, so as to individually shape each pulses of ultrafast lasers for novel quantum control applications.

5.
Phys Rev Lett ; 125(21): 213602, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33275003

RESUMO

Dipole spin-wave states of atomic ensembles with wave vector k(ω) mismatched from the dispersion relation of light are difficult to access by far-field excitation but may support rich phenomena beyond the traditional phase-matched scenario in quantum optics. We propose and demonstrate an optical technique to efficiently access these states. In particular, subnanosecond laser pulses shaped by a home-developed wideband modulation method are applied to shift the spin wave in k space with state-dependent geometric phase patterning, in an error-resilient fashion and on timescales much faster than spontaneous emission. We verify this control through the redirection, switch off, and recall of collectively enhanced emission from a ^{87}Rb gas with ∼75% single-step efficiency. Our work represents a first step toward efficient control of electric dipole spin waves for studying many-body dissipative dynamics of excited gases, as well as for numerous quantum optical applications.

6.
Opt Express ; 28(12): 17171-17187, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32679930

RESUMO

Advances of quantum control technology have led to nearly perfect single-qubit control of nuclear spins and atomic hyperfine ground states. In contrast, quantum control of strong optical transitions, even for free atoms, are far from being perfect. Developments of such quantum control appears to be limited by available laser technology for generating isolated, sub-nanosecond optical waveforms with 10's of GHz programming bandwidth. Here we propose a simple and robust method for the desired pulse shaping, based on precisely stacking multiple delayed picosecond pulses. Our proof-of-principal demonstration leads to arbitrarily shapeable optical waveforms with 30 GHz bandwidth and 100 ps duration. We confirm the stability of the waveforms by interfacing the pulses with laser-cooled atoms, resulting in "super-resolved" spectroscopic signals. This pulse shaping method may open exciting perspectives in quantum optics, and for fast laser cooling and atom interferometry with mode-locked lasers.

7.
Opt Express ; 26(11): 14346-14355, 2018 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-29877475

RESUMO

We demonstrate a method to create dynamic optical lattices with lattice constant tunable down to the optical wavelength limit. The periodicity of 1D lattice is to be adjusted by rotating the incoming direction of one of the two interfering laser beams with its fiber port. The relative phase between the stationary and rotating lasers are stabilized with a heterodyne phase-lock loop (Ma et al, Opt. Lett. 19, 1777, 1994), by reflecting part of the rotating laser beam back from a cylindrical mirror near the experiment. Our preliminary demonstration shows tuning of lattice constant λ2sinθ/2, limited by our imaging resolution, between θ = 3° and 20°, with stable and tunable phase. The results can be extended to achieve lattice constant tuning range from ∼ 10λ down to λ/2. We discuss extension of the demonstrated scheme for improved vibration suppression, and for lattice utilizing broadband lasers. Finally we propose a 2D accordion lattice design for quantum gas experiments.

8.
Rev Sci Instrum ; 84(9): 096101, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24089876

RESUMO

We present two complementary designs of pneumatically actuated and kinematically positioned optics mounts: one designed for vertical mounting and translation, the other designed for horizontal mounting and translation. The design and measured stability make these mounts well-suited to experiments with laser-cooled atoms.

9.
Phys Rev Lett ; 107(2): 023001, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21797599

RESUMO

Optical frequencies of the D lines of (6,7)Li were measured with a relative accuracy of 5 × 10⁻¹¹ using an optical comb synthesizer. Quantum interference in the laser induced fluorescence for the partially resolved D2 lines was found to produce polarization dependent shifts as large as 1 MHz. Our results resolve large discrepancies among previous experiments and between all experiments and theory. The fine-structure splittings for 6Li and 7Li are 10052.837(22) MHz and 10053.435(21) MHz. The splitting isotope shift is 0.599(30) MHz, in reasonable agreement with recent theoretical calculations.

10.
Phys Rev Lett ; 106(21): 213001, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21699293

RESUMO

We propose a laser cooling technique in which atoms are selectively excited to a dressed metastable state whose light shift and decay rate are spatially correlated for Sisyphus cooling. The case of cooling magnetically trapped (anti)hydrogen with the 1S-2S-3P transitions by using pulsed ultraviolet and continuous-wave visible lasers is numerically simulated. We find a number of appealing features including rapid three-dimensional cooling from ∼1 K to recoil-limited, millikelvin temperatures, as well as suppressed spin-flip loss and manageable photoionization loss.

11.
Phys Rev Lett ; 103(17): 173003, 2009 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-19905754

RESUMO

We demonstrate a magnetooptical trap (MOT) configuration which employs optical forces due to light scattering between electronically excited states of the atom. With the standard MOT laser beams propagating along the x and y directions, the laser beams along the z direction are at a different wavelength that couples two sets of excited states. We demonstrate efficient cooling and trapping of cesium atoms in a vapor cell and sub-Doppler cooling on both the red and blue sides of the two-photon resonance. The technique demonstrated in this work may have applications in background-free detection of trapped atoms, and in assisting laser cooling and trapping of certain atomic species that require cooling lasers at inconvenient wavelengths.

12.
Phys Rev Lett ; 103(3): 034101, 2009 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-19659282

RESUMO

We use an atom interferometer to investigate the dynamics of matter waves in a periodically pulsed optical standing wave: an atom optics realization of the quantum kicked rotor that exhibits chaotic classical dynamics. We experimentally show that a measure of the coherence between the interferometer diffraction orders can revive after a quick initial loss, and can approach a finite asymptote as the number of kicks increases. This observation demonstrates that quantum fidelity of a classically chaotic system can survive strong perturbations over long times without decay.

13.
Phys Rev Lett ; 99(17): 173201, 2007 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-17995327

RESUMO

We demonstrate area-enclosing atom interferometry based on a moving guide. Light pulses along the free-propagation direction of a magnetic guide are applied to split and recombine the confined atomic matter-wave, while the atoms are translated back and forth along a second direction in 50 ms. The interferometer is estimated to resolve 10 times the earth rotation rate per interferometry cycle. We demonstrate a "folded figure 8" interfering configuration for creating a compact, large-area atom gyroscope with multiple-turn interfering paths.

14.
Phys Rev Lett ; 94(9): 090405, 2005 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-15783948

RESUMO

An atom Michelson interferometer is implemented on an "atom chip." The chip uses lithographically patterned conductors and external magnetic fields to produce and guide a Bose-Einstein condensate. Splitting, reflecting, and recombining of condensate atoms are achieved by a standing-wave light field having a wave vector aligned along the atom waveguide. A differential phase shift between the two arms of the interferometer is introduced by either a magnetic-field gradient or with an initial condensate velocity. Interference contrast is still observable at 20% with an atom propagation time of 10 ms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...