Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Precis Oncol ; 7(1): 102, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821657

RESUMO

Conventional chemotherapy targets malignant cells without evaluating counter protection from the tumor microenvironment that often causes treatment failure. Herein, we establish chemoresistant fibroblasts (rCAFs) as regulators of neoadjuvant chemotherapeutic (NACT) response in head and neck squamous cell carcinoma (HNSCC). Clinically, high expression of CAF-related gene signature correlates with worse prognosis and chemotherapeutic response in multiple cancers, while the population of CAFs in the residual tumors of chemoresistant HNSCC patients remains unchanged after NACT treatment, compared to chemosensitive patients. Using a murine cancer model or patient-derived organoid, and primary CAFs isolated from chemo-sensitive (sCAFs) or -resistant patients, we show that rCAFs, but not sCAFs, are resistant to chemotherapy-induced apoptosis while reducing HNSCC cell chemosensitivity via paracrine signals. Combined multi-omics and biochemical analyses indicate an elevated PI3K/AKT/p65 driven cell survival and cytokine production in rCAFs, while rCAF-secreted TGFα promotes cancer cell chemoresistance by activating EGFR/Src/STAT3 survival signaling axis. Treatment with anti-EGFR cetuximab restores the chemosensitivity of tumors derived from co-injection of cancer cells and rCAFs in vivo, while the serum level of TGFα determines NACT response in HNSCC patients. Overall, our findings uncover a novel insight whereby the crosstalk between tumor cell and rCAF determines chemotherapeutic response and prognosis in cancer patients.

2.
Sci Transl Med ; 15(678): eabl7895, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36630483

RESUMO

Pancreatic and lung cancers frequently develop resistance to chemotherapy-induced cell apoptosis during the treatment, indicating that targeting nonapoptotic-related pathways, such as pyroptosis, can be an alternative cancer treatment strategy. Pyroptosis is a gasdermin-driven lytic programmed cell death triggered by inflammatory caspases when initiated by canonical or noncanonical pathways that has been recently seen as a potential therapeutic target in cancer treatment. However, overcoming chemoresistance in cancers by modulating pyroptosis has not been explored. Here, we demonstrate that ß5-integrin represses chemotherapy-induced canonical pyroptosis to confer cancer chemoresistance through ASAH2-driven sphingolipid metabolic reprogramming. Clinically, high ß5-integrin expression associates with poor patient prognosis and chemotherapeutic responses in cancers. In addition, chemoresistant cells in vitro fail to undergo chemotherapy-induced pyroptosis, which is controlled by ß5-integrin. Mechanistically, proteomic and lipidomic analyses indicate that ß5-integrin up-regulates sphingolipid metabolic enzyme ceramidase (ASAH2) expression through Src-signal transducer and activator of transcription 3 (STAT3) signaling, which then reduces the metabolite ceramide concentration and subsequent ROS production to prohibit chemotherapy-induced canonical pyroptosis. Using cancer cell lines, patient-derived tumor organoids, and orthotopic lung and pancreatic animal models, we show that administration of a Src or ceramidase inhibitor rescues the response of chemoresistant pancreatic and lung cancer cells to chemotherapy by reactivating pyroptosis in vitro and in vivo. Overall, our results suggest that pyroptosis-based therapy is a means to improve cancer treatment and warrants further investigation.


Assuntos
Antineoplásicos , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas pp60(c-src) , Piroptose , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Integrinas/metabolismo , Pulmão/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Proteômica , Piroptose/efeitos dos fármacos , Proteínas Proto-Oncogênicas pp60(c-src)/efeitos dos fármacos , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Humanos , Cadeias beta de Integrinas/metabolismo , Fator de Transcrição STAT3/metabolismo , Ceramidases/metabolismo , Neoplasias Pancreáticas
3.
Cancer Med ; 12(5): 6388-6400, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36404634

RESUMO

BACKGROUND: Head and neck squamous cell carcinomas (HNSCC) are the most common type of head and neck cancer with an unimproved prognosis over the past decades. Although the role of cancer-associated-fibroblast (CAF) has been demonstrated in HNSCC, the correlation between CAF-derived gene expression and patient prognosis remains unknown. METHODS: A total of 528 patients from TCGA database and 270 patients from GSE65858 database were contained in this study. After extracting 66 CAF-related gene expression data from TCGA database, consensus clustering was performed to identify different HNSCC subtypes. Limma package was used to distinguish the differentially expression genes (DEGs) between these subtypes, followed by Lasso regression analysis to construct a prognostic model. The model was validated by performing Kaplan-Meier survival, ROC and risk curve, univariate and multivariate COX regression analysis. GO, KEGG, GSEA, ESTIMATE and ssGSEA analyses was performed to explort the potential mechanism leading to different prognosis. RESULTS: Based on the 66 CAF-related gene expression pattern we stratitied HNSCC patients into two previously unreported subtypes with different clinical outcomes. A prognostic model composed of 15 DEGs was constructed and validated. In addition, bioinformatics analysis showed that the prognostic risk of HNSCC patients was also negatively correlated to immune infiltration, implying the role of tumor immune escape in HNSCC prognosis and treatment option. CONCLUSIONS: The study develops a reliable prognostic prediction tool and provides a theoretical treatment guidance for HNSCC patients.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Prognóstico , Estimativa de Kaplan-Meier , Neoplasias de Cabeça e Pescoço/genética
4.
Pharmacol Res ; 187: 106558, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36410675

RESUMO

Dysregulated sphingolipid metabolism contributes to ER+ breast cancer progression and therapeutic response, whereas its underlying mechanism and contribution to tamoxifen resistance (TAMR) is unknown. Here, we establish sphingolipid metabolic enzyme CERK as a regulator of TAMR in breast cancer. Multi-omics analysis reveals an elevated CERK driven sphingolipid metabolic reprogramming in TAMR cells, while high CERK expression associates with worse patient prognosis in ER+ breast cancer. CERK overexpression confers tamoxifen resistance and promotes tumorigenicity in ER+ breast cancer cells. Knocking out CERK inhibits the orthotopic breast tumor growth of TAMR cells while rescuing their tamoxifen sensitivity. Mechanistically, the elevated EHF expression transcriptionally up-regulates CERK expression to prohibit tamoxifen-induced sphingolipid ceramide accumulation, which then inhibits tamoxifen-mediated repression on PI3K/AKT dependent cell proliferation and its driven p53/caspase-3 mediated apoptosis in TAMR cells. This work provides insight into the regulation of sphingolipid metabolism in tamoxifen resistance and identifies a potential therapeutic target for this disease.


Assuntos
Neoplasias da Mama , Resistencia a Medicamentos Antineoplásicos , Tamoxifeno , Feminino , Humanos , Antineoplásicos Hormonais/farmacologia , Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Células MCF-7 , Fosfatidilinositol 3-Quinases/metabolismo , Receptores de Estrogênio/metabolismo , Esfingolipídeos , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico
5.
Transl Cancer Res ; 11(11): 3986-3999, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36523307

RESUMO

Background: The nature of the tumor immune microenvironment (TME) is essential for the head and neck squamous cell carcinomas (HNSCC) initiation, prognosis, and response to immunotherapy. However, its gene regulatory network remains to be elucidated. Methods: To identify N6-methyladenosine (m6A) regulators that are involved in regulating the HNSCC TME, a computational screen was applied to The Cancer Genome Atlas (TCGA) HNSCC patient samples. The effects of mutation, copy number variation (CNV), and transcriptional regulation on YTHDF1 expression were analyzed. We analyzed the TME infiltration, cancer-immunity cycle activities, and YTHDF1-related Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Results: Among the 24 m6A regulators, 3 factors (YTHDF1, ELAVL1, and METTL3) were highly correlated with TME infiltration. As the top candidate, YTHDF1 was up-regulated and amplified in HNSCC. YTHDF1 promoter gains active histone marks and high chromatin accessibility, which might be transcriptionally activated by SOX2 and TP63. Moreover, YTHDF1 expression significantly associates with tumor malignant phenotype in HNSCC, which has a positive correlation with CD4+ T cells and a negative correlation with CD8+ T cells infiltration. Specifically, YTHDF1 expression is negatively associated with the cancer-immunity cycle and immune checkpoint inhibitors. In terms of the underlying biological mechanisms, YTHDF1 may interact with YTHDF2/3 to regulate several vital immune-related pathways. Conclusions: We identify YTHDF1 associated with TME and elucidate an underlying mechanism of immune escape in HNSCC, which might be used as a predictive marker in guiding immunotherapy.

6.
Int Immunopharmacol ; 110: 108846, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35816946

RESUMO

Tumor mutation burden high (TMB-H) is widely used in the guidance of immune checkpoint blocking (ICB) therapy for head and neck squamous cell carcinoma (HNSCC) patients. However, a few patients still had a poor response. Therefore, it is necessary to investigate a better model to guide ICB therapy. We constructed a genomic mutation model conducive to ICB therapy using an available HNSCC dataset. Moreover, treatment procedures for patients with HNSCC from our internal cohort confirmed this model. Here, a genomic mutation signature based on a list of 25 candidate genes that are favorable for immunotherapy was established. Patients with combined mutation had a respectable clinical outcome under ICB treatment. Notably, compared with patients who obtained TMB-H (TMB ≥ 10, but did not have combined mutation), those patients with TMB-L (TMB < 10) and combined mutation acquired remarkably beneficial overall survival. Moreover, the combined mutation signature predicting the survival status of patients was superior to TMB, with a Youden index of 0.55. Furthermore, higher immune cell infiltration levels, more active cancer-immunity cycle activities and immune response pathways were observed in patients with combined mutation. Finally, our internal cohort further confirmed that combined mutated patients can benefit from ICB therapy rather than any other patients.


Assuntos
Neoplasias de Cabeça e Pescoço , Imunoterapia , Biomarcadores Tumorais/genética , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/terapia , Humanos , Imunoterapia/métodos , Mutação , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia
7.
Nat Commun ; 12(1): 6011, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34650057

RESUMO

Defective pericyte-endothelial cell interaction in tumors leads to a chaotic, poorly organized and dysfunctional vasculature. However, the underlying mechanism behind this is poorly studied. Herein, we develop a method that combines magnetic beads and flow cytometry cell sorting to isolate pericytes from tumors and normal adjacent tissues from patients with non-small cell lung cancer (NSCLC) and hepatocellular carcinoma (HCC). Pericytes from tumors show defective blood vessel supporting functions when comparing to those obtained from normal tissues. Mechanistically, combined proteomics and metabolic flux analysis reveals elevated hexokinase 2(HK2)-driven glycolysis in tumor pericytes, which up-regulates their ROCK2-MLC2 mediated contractility leading to impaired blood vessel supporting function. Clinically, high percentage of HK2 positive pericytes in blood vessels correlates with poor patient overall survival in NSCLC and HCC. Administration of a HK2 inhibitor induces pericyte-MLC2 driven tumor vasculature remodeling leading to enhanced drug delivery and efficacy against tumor growth. Overall, these data suggest that glycolysis in tumor pericytes regulates their blood vessel supporting role.


Assuntos
Vasos Sanguíneos/anormalidades , Glicólise , Hexoquinase/metabolismo , Neoplasias de Tecido Vascular/metabolismo , Pericitos/metabolismo , Células A549 , Animais , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patologia , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/metabolismo , Regulação Neoplásica da Expressão Gênica , Hexoquinase/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Cadeias Leves de Miosina/genética , Cadeias Leves de Miosina/metabolismo , Neoplasias/metabolismo , Neoplasias de Tecido Vascular/tratamento farmacológico , Neoplasias de Tecido Vascular/genética , Neoplasias de Tecido Vascular/patologia , Microambiente Tumoral/fisiologia , Regulação para Cima , Quinases Associadas a rho
8.
Cancer Cell Int ; 21(1): 549, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663338

RESUMO

BACKGROUND: The cause and underlying molecular mechanisms of head and neck squamous cell carcinoma (HNSCC) are unclear. Our study aims to identify the key genes associated with HNSCC and reveal potential biomarkers. METHODS: In this study, the expression profile dataset GSE83519 of the Gene Expression Omnibus database and the RNA sequencing dataset of HNSCC of The Cancer Genome Atlas were included for analysis. Sixteen differentially expressed genes were screened from these two datasets using R software. Gene Expression Profiling Interactive Analysis 2 (GEPIA2) was then adopted for survival analysis, and finally, three key genes related to the overall survival of HNSCC patients were identified. Furthermore, we verified these three genes using the Oncomine database and from real-time PCR and immunohistochemistry results from HNSCC tissues. RESULTS: The expression data of 44 samples from GSE83519 and 545 samples from TCGA-HNSC were collected. Using bioinformatics, the two databases were integrated, and 16 DEGs were screened out. Gene Ontology (GO) enrichment analysis showed that the biological functions of DEGs focused primarily on the apical plasma membrane and regulation of anoikis. Kyoto Encyclopedia of Genes and Genomes (KEGG) signalling pathway analysis showed that these DEGs were mainly involved in drug metabolism-cytochrome P450 and serotonergic synapses. Survival analysis identified three key genes, CEACAM5, CEACAM6 and CLCA4, that were closely related to HNSCC prognosis. The Oncomine database, qRT-PCR and IHC verified that all 3 key genes were downregulated in most HNSCC tissues compared to adjacent normal tissues. CONCLUSIONS: This study indicates that integrated bioinformatics analyses play an important role in screening for differentially expressed genes and pathways in HNSCC, helping us better understand the biomarkers and molecular mechanism of HNSCC.

9.
Cancer Lett ; 500: 228-243, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33309857

RESUMO

Aberrant glycosylation in pancreatic cancer has been linked to cancer development, progression and chemoresistance. However, the role of glycogene, such as galactosyltransferase, in pancreatic cancer remains unknown. Herein, we establish beta-1.4-galactosyltransferase 1 (B4GALT1) as a clinical marker and regulator of chemoresistance. Clinically, high B4GALT1 expression correlates with poor survival, enhanced tumor size, increased lymph node metastasis, elevated cancer progression and enhanced incidence of relapse in PDAC patients. Expression of B4GALT1 is up-regulated in gemcitabine resistant patient derived organoids as well as chemoresistant cancer cell lines, while genetic perturbation of its expression in PDAC cell lines regulates cancer progression and chemoresistance. Mechanistically, we show that elevated p65 activity transcriptionally up-regulates B4GALT1 expression, which then interacts with and stabilizes cyclin dependent kinase 11 isomer CDK11p110 protein via N-linked glycosylation, in order to promote cancer progression and chemoresistance. Finally, depletion of B4GALT1 rescues the response of chemoresistant cells to gemcitabine in an orthotopic PDAC model. Overall, our data uncovers a mechanism by which p65-B4GALT1-CDK11p110 signalling axis determines cancer progression and chemoresistance, providing a new therapeutic target for an improved pancreatic cancer treatment.


Assuntos
Adenocarcinoma/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Quinases Ciclina-Dependentes/genética , Galactosiltransferases/genética , Fator de Transcrição RelA/genética , Adenocarcinoma/genética , Adenocarcinoma/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/efeitos adversos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicosilação/efeitos dos fármacos , Humanos , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Organoides/efeitos dos fármacos , Gencitabina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...