Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(20)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-33980712

RESUMO

We use polarization-resolved electronic Raman spectroscopy to study quadrupolar charge dynamics in a nonmagnetic [Formula: see text] superconductor. We observe two types of long-wavelength [Formula: see text] symmetry excitations: 1) a low-energy quasi-elastic scattering peak (QEP) and 2) a broad electronic continuum with a maximum at 55 meV. Below the tetragonal-to-orthorhombic structural transition at [Formula: see text], a pseudogap suppression with temperature dependence reminiscent of the nematic order parameter develops in the [Formula: see text] symmetry spectra of the electronic excitation continuum. The QEP exhibits critical enhancement upon cooling toward [Formula: see text] The intensity of the QEP grows with increasing sulfur concentration x and maximizes near critical concentration [Formula: see text], while the pseudogap size decreases with the suppression of [Formula: see text] We interpret the development of the pseudogap in the quadrupole scattering channel as a manifestation of transition from the non-Fermi liquid regime, dominated by strong Pomeranchuk-like fluctuations giving rise to intense electronic continuum of excitations in the fourfold symmetric high-temperature phase, to the Fermi liquid regime in the broken-symmetry nematic phase where the quadrupole fluctuations are suppressed.

2.
Nat Commun ; 11(1): 4003, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32778651

RESUMO

Kagome-nets, appearing in electronic, photonic and cold-atom systems, host frustrated fermionic and bosonic excitations. However, it is rare to find a system to study their fermion-boson many-body interplay. Here we use state-of-the-art scanning tunneling microscopy/spectroscopy to discover unusual electronic coupling to flat-band phonons in a layered kagome paramagnet, CoSn. We image the kagome structure with unprecedented atomic resolution and observe the striking bosonic mode interacting with dispersive kagome electrons near the Fermi surface. At this mode energy, the fermionic quasi-particle dispersion exhibits a pronounced renormalization, signaling a giant coupling to bosons. Through the self-energy analysis, first-principles calculation, and a lattice vibration model, we present evidence that this mode arises from the geometrically frustrated phonon flat-band, which is the lattice bosonic analog of the kagome electron flat-band. Our findings provide the first example of kagome bosonic mode (flat-band phonon) in electronic excitations and its strong interaction with fermionic degrees of freedom in kagome-net materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...