Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1401287, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911975

RESUMO

Both subsoiling tillage (ST) and ridge and furrow rainfall harvesting (RF) are widely implemented and play an important role in boosting wheat productivity. However, information about the effects of ST coupled with RF during the summer fallow season on wheat productivity and environmental issues remains limited. This study aims to explore the effects of ST coupled with RF on water harvesting, wheat productivity-yield traits, water and nutrient use efficiency and quality, and soil nitrate-N residue in dryland winter wheat-summer fallow rotation at the intersection of southern Loess Plateau and western Huang-Huai-Hai Plain in China in 2018-2022. Three tillage practices-deep plowing with straw turnover (PTST), subsoiling with straw mulching (STSM), and STSM coupled with RF (SRFSM)-are conducted during the summer fallow season. The results indicated that tillage practices during the summer fallow season significantly impacted wheat productivity and soil nitrate-N residue. Compared to PTST, STSM significantly enhanced rainfall fallow efficiency and water use efficiency by 7.0% and 14.2%, respectively, as well as N, P, and K uptake efficiency by 16.9%, 16.2%, and 15.3%, and thus increased grain yield by 14.3% and improved most parameters of protein components and processing quality, albeit with an increase in nitrate-N residue in the 0- to 300-cm soil depth by 12.5%. SRFSM, in turn, led to a further increase in water storage at sowing, resulting in an increase of water use efficiency by 6.8%, as well as N, P, and K uptake efficiency and K internal efficiency by 11.8%, 10.4%, 8.8%, and 4.7%, thereby significantly promoting grain yield by 10.2%, and improving the contents of all the protein components and enhancing the processing quality in grain, and simultaneously reducing the nitrate-N residue in the 0- to 300-cm soil layer by 16.1%, compared to STSM. In essence, this study posits that employing subsoiling coupled with ridge-furrow rainfall harvesting (SRFSM) during the summer fallow season is a promising strategy for enhancing wheat yield, efficiency, and quality, and simultaneously reducing soil nitrate-N residue within the dryland summer fallow-winter wheat rotation system.

2.
Front Plant Sci ; 14: 1276918, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37929165

RESUMO

Medicinal plants are invaluable resources for mankind and play a crucial role in combating diseases. Arbuscular mycorrhizal fungi (AMF) are widely recognized for enhancing the production of medicinal active ingredients in medicinal plants. However, there is still a lack of comprehensive understanding regarding the quantitative effects of AMF on the accumulation of medicinal active ingredients. Here we conducted a comprehensive global analysis using 233 paired observations to investigate the impact of AMF inoculation on the accumulation of medicinal active ingredients. This study revealed that AMF inoculation significantly increased the contents of medicinal active ingredients by 27%, with a particularly notable enhancement observed in flavonoids (68%) and terpenoids (53%). Furthermore, the response of medicinal active ingredients in belowground organs (32%) to AMF was more pronounced than that in aboveground organs (18%). Notably, the AMF genus Rhizophagus exhibited the strongest effect in improving the contents of medicinal active ingredients, resulting in an increase of over 50% in both aboveground and belowground organs. Additionally, the promotion of medicinal active ingredients by AMF was attributed to improvements in physiological factors, such as chlorophyll, stomatal conductance and net photosynthetic rate. Collectively, this research substantially advanced our comprehension of the pivotal role of AMF in improving the medicinal active ingredients of plants and provided valuable insights into the potential mechanisms driving these enhancements.

3.
J Fungi (Basel) ; 9(5)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37233299

RESUMO

Senesced leaves play a vital role in nutrient cycles in the terrestrial ecosystem. The carbon (C), nitrogen (N) and phosphorus (P) stoichiometries in senesced leaves have been reported, which are influenced by biotic and abiotic factors, such as climate variables and plant functional groups. It is well known that mycorrhizal types are one of the most important functional characteristics of plants that affect leaf C:N:P stoichiometry. While green leaves' traits have been widely reported based on the different mycorrhiza types, the senesced leaves' C:N:P stoichiometries among mycorrhizal types are rarely investigated. Here, the patterns in senesced leaves' C:N:P stoichiometry among plants associated with arbuscular mycorrhizal (AM), ectomycorrhizal (ECM), or AM + ECM fungi were explored. Overall, the senesced leaves' C, with 446.8 mg/g in AM plants, was significantly lower than that in AM + ECM and ECM species, being 493.1 and 501.4 mg/g, respectively, which was mainly caused by boreal biomes. The 8.9 mg/g senesced leaves' N in ECM plants was significantly lower than in AM (10.4 mg/g) or AM + ECM taxa (10.9 mg/g). Meanwhile, the senesced leaves' P presented no difference in plant associations with AM, AM + ECM and ECM. The senesced leaves' C and N presented contrary trends with the changes in mean annual temperature (MAT) and mean annual precipitation (MAP) in ECM or AM + ECM plants. The differences in senesced leaves' C and N may be more easily influenced by the plant mycorrhizal types, but not P and stoichiometric ratios of C, N and P. Our results suggest that senesced leaves' C:N:P stoichiometries depend on mycorrhizal types, which supports the hypothesis that mycorrhizal type is linked to the evolution of carbon-nutrient cycle interactions in the ecosystem.

4.
Plant Physiol Biochem ; 200: 107739, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37196373

RESUMO

Black mung bean is rich in anthocyanin, however, the accumulation and the molecular mechanism of anthocyanin synthesis in black mung bean are unclear. In this study, anthocyanin metabolomics and transcriptomics on the seed coats of two different colors of mung bean were performed to clarify the composition of anthocyanins, and identify transcription factors involved in regulating anthocyanin biosynthesis. In the mature stage, 23 kinds of anthocyanin compounds were identified. All anthocyanin components contents were significantly higher in seed coat of black mung bean compare with green mung bean. Transcriptome analysis suggested that most of the structural genes for anthocyanin biosynthesis and some potential regulatory genes were significantly differentially expressed. WGCNA suggested VrMYB90 was an important regulatory gene in anthocyanin biosynthesis. Arabidopsis thaliana overexpressing VrMYB90 showed significant accumulation of anthocyanins. PAL, 4CL, DFR, F3'5'H, LDOX, F3'H and UFGT were up-regulated in 35S:VrMYB90 Arabidopsis thaliana. These findings provide valuable information for understanding the synthesis mechanism of anthocyanins in black mung bean seed coats.


Assuntos
Arabidopsis , Fabaceae , Vigna , Antocianinas/genética , Vigna/genética , Transcriptoma/genética , Arabidopsis/genética , Perfilação da Expressão Gênica , Sementes/genética , Fabaceae/genética , Metabolômica , Regulação da Expressão Gênica de Plantas
5.
Membranes (Basel) ; 12(10)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36295724

RESUMO

Sodium hypochlorite (NaOCl) is a commonly used cleaning agent for recovering membrane performance in membrane technologies. A thorough understanding of the impacts of NaOCl exposure on membrane properties and fouling behavior is important for optimizing chemical cleaning process and extending membrane lifespan. In this study, three commercial polyvinylidene fluoride (PVDF) hollow fiber ultrafiltration membranes (SMM-1010, MEMCOR® CS II and ZeeWeed 500) were used to systematically explore the effects of NaOCl dose and solution pH (8 and 10) on membrane properties. The results showed that membrane pores increased with exposure time prolonging, and more pores were observed at pH 8 aging condition. The amide group in the Fourier transformation infrared spectra was disappeared, while the carboxylic acid and succinimide groups were formed at pH 10 and pH 8 conditions, respectively. The hydrophilicity and pure water permeability (PWP) of SMM-1010 and MEMCOR® CS II membranes had insignificant changes during NaOCl aging process, whereas the hydrophilicity of ZeeWeed 500 membrane slightly decreased and its PWP increased by 1.4-fold. The antifouling properties of NaOCl-aged SMM-1010 and MEMCOR® CS II membranes were slightly improved, whereas the NaOCl-aged ZeeWeed 500 membrane showed severer flux decline with humic acid filtration. Our findings could provide guidance for practical chemical cleaning process optimization.

6.
PeerJ ; 10: e12861, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35178300

RESUMO

BACKGROUND: Rainfed agriculture plays key role in ensuring food security and maintain ecological balance. Especially in developing areas, most grain food are produced rainfed agricultural ecosystem. Therefore, the increase of crop yields in rainfed agricultural ecosystem becomes vital as well as ensuring global food security. METHODS: The potential roles of arbuscular mycorrhizal fungi (AMF) in improving crop yields under rainfed condition were explored based on 546 pairs of observations published from 1950 to 2021. RESULTS: AMF inoculation increased 23.0% crop yields based on 13 popular crops under rainfed condition. Not only was crop biomass of shoot and root increased 24.2% and 29.6% by AMF inocula, respectively but also seed number and pod/fruit number per plant were enhanced markedly. Further, the effect of AMF on crop yields depended on different crop groups. AMF improved more yield of N-fixing crops than non-N-fixing crops. The effect of AMF changed between grain and non-grain crops with the effect size of 0.216 and 0.352, respectively. AMF inoculation enhances stress resistance and photosynthesis of host crop in rainfed agriculture. CONCLUSION: AMF increased crop yields by enhancing shoot biomass due to the improvement of plant nutrition, photosynthesis, and stress resistance in rainfed field. Our findings provide a new view for understanding the sustainable productivity in rainfed agroecosystem, which enriched the theory of AMF functional diversity. This study provided a theoretical and technical way for sustainable production under rainfed agriculture.


Assuntos
Micorrizas , Biomassa , Ecossistema , Produtos Agrícolas/microbiologia , Agricultura , Grão Comestível
7.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 42(6): 644-8, 2013 11.
Artigo em Chinês | MEDLINE | ID: mdl-24421230

RESUMO

OBJECTIVE: To prepare nanofibrous membranes of poly (vinyl alcohol)/chitosan (PVA/CS) loaded with varied salvianic acid A sodium (SAS) contents. METHODS: Ultrafine fiber mats were prepared with PVA/CS as matrix and SAS as model drug. The structure and morphology of the nanofibrous membranes were characterized by FT-IR and SEM. Drug-loading amount and drug release profiles of these membranes were determined by UV VIS spectra, and the degradation of the membranes was also investigated. RESULTS: Average diameters of PVA/CS/SAS nanofibers with different SAS contents were 280 ≊390 nm. Drug-loading amount of these nanofibrous membranes was high and exhibited sustained and controlled release behavior for SAS. CONCLUSION: The PVA/CS/SAS nanofibrous membrane prepared in this study loads drug uniformly and has remarkably sustained release behavior, which may offer strategies for the research and development of novel topical drug delivery systems.


Assuntos
Quitosana/síntese química , Portadores de Fármacos , Álcool de Polivinil/síntese química , Membranas Artificiais , Nanofibras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...