Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2307807, 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38342673

RESUMO

Sodium (Na) doping is a well-established technique employed in chalcopyrite and kesterite solar cells. While various improvements can be achieved in crystalline quality, electrical properties, or defect passivation of the absorber materials by incorporating Na, a comprehensive demonstration of the desired Na distribution in CZTSSe is still lacking. Herein, a straightforward Na doping approach by dissolving NaCl into the CZTS precursor solution is proposed. It is demonstrated that a favorable Na ion distribution should comprise a precisely controlled Na+ concentration at the front surface and an enhanced distribution within the bottom region of the absorber layer. These findings demonstrated that Na ions play several positive roles within the device, leading to an overall power conversion efficiency of 12.51%.

2.
Adv Mater ; 32(26): e1904346, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32449199

RESUMO

The capability of manipulating the interfacial electronic coupling is the key to achieving on-demand functionalities of catalysts. Herein, it is demonstrated that the electronic coupling of Fe2 N can be effectively regulated for hydrogen evolution reaction (HER) catalysis by vacancy-mediated orbital steering. Ex situ refined structural analysis reveals that the electronic and coordination states of Fe2 N can be well manipulated by nitrogen vacancies, which impressively exhibit strong correlation with the catalytic activities. Theoretical studies further indicate that the nitrogen vacancy can uniquely steer the orbital orientation of the active sites to tailor the electronic coupling and thus benefit the surface adsorption capability. This work sheds light on the understanding of the catalytic mechanism in real systems and could contribute to revolutionizing the current catalyst design for HER and beyond.

3.
Nat Commun ; 9(1): 1425, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29651037

RESUMO

Metal sulfides for hydrogen evolution catalysis typically suffer from unfavorable hydrogen desorption properties due to the strong interaction between the adsorbed H and the intensely electronegative sulfur. Here, we demonstrate a general strategy to improve the hydrogen evolution catalysis of metal sulfides by modulating the surface electron densities. The N modulated NiCo2S4 nanowire arrays exhibit an overpotential of 41 mV at 10 mA cm-2 and a Tafel slope of 37 mV dec-1, which are very close to the performance of the benchmark Pt/C in alkaline condition. X-ray photoelectron spectroscopy, synchrotron-based X-ray absorption spectroscopy, and density functional theory studies consistently confirm the surface electron densities of NiCo2S4 have been effectively manipulated by N doping. The capability to modulate the electron densities of the catalytic sites could provide valuable insights for the rational design of highly efficient catalysts for hydrogen evolution and beyond.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...