Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(1): 551-557, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38086645

RESUMO

We designed a narrow-band metamaterial absorber (NMA) and an ultra-broadband metamaterial perfect absorber (UMPA) based on the impedance matching theory. The narrow-band metamaterial absorber mainly consists of Si3N4 cylinders with Si3N4 and Ti substrates. Numerical analysis shows that the absorption peak of the NMA is about 99.9% and the absorption bandwidth with more than 90% absorption is about 4.8 µm (9.5-14.3 µm). To further extend the absorption bandwidth, an ultra-broadband absorber was designed by integrating a Ti hyperbolic rectangle into the Si3N4 cylinder of the NMA. Numerical analysis shows that the absorption bandwidth of the UMPA is up to 10 µm (7-17 µm) with an average absorption rate of 96.6%. The designed UMPA has polarization insensitive properties with wide-angle absorption characteristics, and the average absorption can reach 85% and 76% in transverse magnetic (TM) and transverse electric (TE) modes, respectively, at 60° oblique incidence. The high absorption and wide band are mainly dominated by localized surface plasmon resonance, Fabry-Perot resonance and inter-resonance interactions. The designed absorber achieves excellent absorption in the long infrared wavelength band, which has potential applications in energy absorption, infrared sensing and other fields.

2.
Phys Chem Chem Phys ; 24(34): 20390-20399, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35983852

RESUMO

We present a reverse design method useful for designing and analyzing metamaterial absorbers; we demonstrate its power by designing both a narrowband absorber and a wideband absorber. The method determines the structure of the absorber using an equivalent-circuit model. The narrowband metamaterial absorber structures were based on the equivalent-circuit model, and the narrowband metamaterial absorber designed using the method has an absorption fraction greater than 90% in a bandwidth of 500 nm centered at about 1450 nm. In order to extend the absorption bandwidth for the absorber, the narrowband absorber structure is adjusted based on the equivalent-circuit model, and the broadband metamaterial absorber structure is investigated. The numerical results show that the absorption bandwidth is substantially increased; the absorbance is greater than 90% for a band nearly reaching the limits of our experiment, from about 400 nm (near-ultraviolet) to about 2800 nm (deep infrared). The absorption spectrum of the wideband absorber is more sensitive to the angle of incident polarization due to the asymmetric structure, but the whole band shows polarization independence. For a large angle of 60° (TM polarization) oblique incidence, the average absorption of the broadband metamaterial absorber reaches 81%. The physical mechanism of the wideband high absorption is analyzed, which is mainly caused by Fabry-Perot resonance, surface plasmon resonance, local surface plasmon resonance, and the hybrid coupling among them. Our proposed design with high-broadband absorption has significant potential for thermoelectric and thermal emitters, solar thermal energy harvesting, and invisible device applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...