Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Oral Health ; 24(1): 418, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580938

RESUMO

Oral squamous cell carcinoma (OSCC) is the most common head and neck malignancy. The oncometabolites have been studied in OSCC, but the mechanism of metabolic reprogramming remains unclear. To identify the potential metabolic markers to distinguish malignant oral squamous cell carcinoma (OSCC) tissue from adjacent healthy tissue and study the mechanism of metabolic reprogramming in OSCC. We compared the metabolites between cancerous and paracancerous tissues of OSCC patients by 1HNMR analysis. We established OSCC derived cell lines and analyzed their difference of RNA expression by RNA sequencing. We investigated the metabolism of γ-aminobutyrate in OSCC derived cells by real time PCR and western blotting. Our data revealed that much more γ-aminobutyrate was produced in cancerous tissues of OSCC patients. The investigation based on OSCC derived cells showed that the increase of γ-aminobutyrate was promoted by the synthesis of glutamate beyond the mitochondria. In OSCC cancerous tissue derived cells, the glutamate was catalyzed to glutamine by glutamine synthetase (GLUL), and then the generated glutamine was metabolized to glutamate by glutaminase (GLS). Finally, the glutamate produced by glutamate-glutamine-glutamate cycle was converted to γ-aminobutyrate by glutamate decarboxylase 2 (GAD2). Our study is not only benefit for understanding the pathological mechanisms of OSCC, but also has application prospects for the diagnosis of OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Neoplasias Bucais/patologia , Glutamina/genética , Glutamina/metabolismo , Reprogramação Metabólica , Glutamatos/genética , Glutamatos/metabolismo , Linhagem Celular Tumoral
2.
Exp Ther Med ; 23(1): 97, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34976139

RESUMO

Oral squamous cell carcinoma (OSCC), which is the most common epithelial malignant neoplasm in the head and neck, is characterized by local infiltration and metastasis of lymph nodes. The five-year survival rate of OSCC remains low despite the advances in clinical methods. miR-141-3p has been shown to activate or inhibit tumorigenesis. However, the effects of miR-141-3p on invasion and migration of OSCC remain unclear. The present study aimed to evaluate the effects of miR-141-3p on invasion, proliferation, and migration in oral squamous cell carcinoma (OSCC). Reverse transcription quantitative PCR, western blotting and immunohistochemistry were used to detect microRNA(miR)-141-3p and pre-B-cell leukaemia homeobox-1 (PBX1) expression in OSCC tissues and cell lines. The luciferase reporter assay was used to detect targets of miR-141-3p in OSCC. MTT, Transwell and wound healing assays were used to determine the cell proliferation and invasive and migratory abilities, respectively. Expression of constitutive phosphorylated (p)-Janus kinase 2 (JAK2) and p-signal transducer and activator of transcription 3 (STAT3) was detected using western blotting in tissues and cells. miR-141-3p expression was decreased in OSCC tissues and cells, while PBX1 protein expression was increased compared with non-cancerous controls. The result from the dual-luciferase reporter assay revealed that PBX1 was the direct target of miR-141-3p in OSCC tissues. Furthermore, miR-141-3p overexpression and PBX1 knockdown could reduce cell invasion, proliferation and migration, and inhibit the JAK2/STAT3 pathway; however, miR-141-3p downregulation had the opposite effects. In addition, silencing of PBX1 using small interfering RNA could weaken the effects of miR-141-3p inhibitor on JAK2/STAT3 pathway and cell progression in CAL27 cells. In summary, the findings from this study indicated that miR-141-3p upregulation could inhibit OSCC cell invasion, proliferation and migration, by targeting PBX1 via the JAK2/STAT3 pathway.

3.
Front Plant Sci ; 13: 1033544, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36777532

RESUMO

One of the main techniques in smart plant protection is pest detection using deep learning technology, which is convenient, cost-effective, and responsive. However, existing deep-learning-based methods can detect only over a dozen common types of bulk agricultural pests in structured environments. Also, such methods generally require large-scale well-labeled pest data sets for their base-class training and novel-class fine-tuning, and these significantly hinder the further promotion of deep convolutional neural network approaches in pest detection for economic crops, forestry, and emergent invasive pests. In this paper, a few-shot pest detection network is introduced to detect rarely collected pest species in natural scenarios. Firstly, a prior-knowledge auxiliary architecture for few-shot pest detection in the wild is presented. Secondly, a hierarchical few-shot pest detection data set has been built in the wild in China over the past few years. Thirdly, a pest ontology relation module is proposed to combine insect taxonomy and inter-image similarity information. Several experiments are presented according to a standard few-shot detection protocol, and the presented model achieves comparable performance to several representative few-shot detection algorithms in terms of both mean average precision (mAP) and mean average recall (mAR). The results show the promising effectiveness of the proposed few-shot detection architecture.

4.
Talanta ; 197: 130-137, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30771914

RESUMO

Competitive host-guest recognition has been utilized to determine small molecules using macrocyclic supramolecular host, while less studies focused on the specific recognition and sensing of protein. In the present work, we are the first time to report a label-free fluorescent assay for insulin determination based on the supramolecular recognition between cationic pillar[6]arene (CP6) and insulin. The approach is based on fluorescence resonance energy transfer (FRET) through competitive recognition between CP6 functionalized reduced graphene oxide (CP6@rGO) and probe/insulin molecules. Probe molecule (RhB) has strong fluorescent signal, and its fluorescent is quenched by rGO based on FRET. When target protein molecule (insulin) is added to CP6@rGO, the probe is displaced by insulin and a host-guest complex CP6@rGO/insulin is formed, resulting in a "turn-on" fluorescence signal. The fluorescence intensity of complex increased linearly with the increase of insulin concentration ranging 0.01-0.50 and 1.0-16.0 µM, respectively with a detection limit of 3 nM. The sensor was successfully utilized to determine insulin in artificial serum. The molecular docking result showed that the N-terminal Phe of insulin's B chain was included in the CP6 cavity through electrostatic interaction and formed a stable host-guest complex.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Fluorescência , Insulina/análise , Compostos de Amônio Quaternário/química , Cátions/química , Estrutura Molecular
5.
RSC Adv ; 8(2): 775-784, 2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35538938

RESUMO

In the present study, thiol ß-cyclodextrin (SH-CD) and ethylenediamine ß-cyclodextrin (NH2-ß-CD) were simultaneously grafted on the same interface of an Au NP deposited carboxyl SiC (Au@CSiC) nanocomposite. An electrochemical sensor for the simultaneous determination of nitrophenol isomers (o-nitrophenol, o-NP; p-nitrophenol, p-NP) using SH-CD and NH2-ß-CD functionalized Au@SiC (Au@CSiC-SH/NH2-CD) nanocomposite was successfully constructed. Differential pulse voltammetry was used to quantify o-NP and p-NP within the concentration range of 0.01-150 µM under the optimal conditions. The detection limit (S/N = 3) of the sensor was 0.019 and 0.023 µM for o-NP and p-NP, respectively, indicating a low detection limit. Interference study results demonstrated that the sensor was not affected in the presence of similar aromatic compounds during the determination of NP isomers, showing high selectivity. The proposed electrochemical sensing platform was successfully used to determine NP isomers in tap water. The low detection limit and high selectivity of the proposed electrochemical sensor were caused by the high surface area, the excellent conductivity, and the more recognized (enriched) NP isomer molecules by SH-ß-CD and NH2-ß-CD of the Au@CSiC-SH/NH2-CD nanocomposite.

6.
Nanoscale ; 9(12): 4272-4282, 2017 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-28294236

RESUMO

Alternative cleavage and polyadenylation (APA) is involved in several important biological processes in animals, e.g. cell growth and development, and cancer progression. The increasing data show that cancer cells are inclined to produce mRNA isoforms with a shortened 3'UTR undergoing APA. For example, the Dicer1 isoform with a shorter 3'untranslated region (3'UTR) was found to be overexpressed in some cancer cells, which may be used as a potential novel prognostic biomarker for cancer. In the present work, a novel electrochemical biosensor for ultrasensitive determination of Dicer1 was designed by using gold nanoparticles and p-sulfonated calix[6]arene functionalized reduced graphene oxide (Au@SCX6-rGO) as nanocarriers. The results showed that the expressions of the shorter 3'UTR (Dicer1-S) both in BT474 and SKBR3 were obviously higher than those of the longer Dicer1 (Dicer1-L) by the constructed biosensor, which agreed well with the result analyzed by the RT-qPCR method. The detection ranges of Dicer1-S and Dicer1-L were 10-14-10-9 M and 10-15-10-10 M. The LODs were 3.5 and 0.53 fM. The specificity of the proposed biosensor was also very high. For the first time, the expressional analysis of different 3'UTRs caused by APA was studied by an electrochemical method. Moreover, the use of a macrocyclic host for constructing an electrochemical/biosensing platform has rarely been reported. The proposed electrochemical sensing strategy is thus expected to provide a new method for determination of novel biomarkers and a novel method for fast and cheap analysis of APA.


Assuntos
Regiões 3' não Traduzidas , Técnicas Biossensoriais , RNA Helicases DEAD-box/análise , Ouro , Nanopartículas Metálicas , Ribonuclease III/análise , Animais , Linhagem Celular Tumoral , Técnicas Eletroquímicas , Humanos , Poliadenilação
7.
Biosens Bioelectron ; 91: 863-869, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28160654

RESUMO

A sensitive and selective fluorescence approach based on a competitive host-guest interaction between amphiphilic pillar[5]arene (amPA5) and signal probe (acridine orange, AO)/target molecule (acetaminophen, AP) was developed by using amPA5 functionalized reduced graphene oxide (amPA5-RGO) as a receptor. Due to the host-guest interaction, AO and AP molecules both can enter into the hydrophobic inner cavity of amPA5 that could form a complex of 1:1 guest-host with amPA5 according to the size of molecules and the cavity of amPA5, but the AP interacts more strongly with amPA5 than with AO, so it can detect AP by the host-guest competition. The low detection limit of 0.05µM (S/N=3) and a linear response range of 0.1-4.0µM and 4.0-32µM for AP was obtained by using this method. It had lower detection limit and wider linear range than other methods, therefore, it was successfully utilized to detect AP in serum samples, and exhibited a promising application in practice. The molecular docking studies indicated that the major driving forces for the formation of the inclusion complex of AP and amPA5 are hydrogen bonding, π-π interactions, and hydrophobic interactions.


Assuntos
Acetaminofen/sangue , Analgésicos não Narcóticos/sangue , Grafite/química , Compostos de Amônio Quaternário/química , Espectrometria de Fluorescência/métodos , Tensoativos/química , Calixarenos , Humanos , Limite de Detecção , Simulação de Acoplamento Molecular , Oxirredução , Óxidos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...