Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 386
Filtrar
1.
Medicine (Baltimore) ; 103(23): e38422, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847698

RESUMO

The purpose of this study is to examine the relationship between fat mass (FM), body fat percentage (BF%), lean body mass (LM), and prostate cancer (PCa), and evaluate their potential impact on the risk of PCa. Data from the National Health and Nutrition Examination Survey (NHANES) of the United States were utilized. Adult male participants from 6 survey cycles between 1999 and 2010 were selected as the study sample. Multivariable logistic regression analysis was conducted to explore the association between BF%, LM, and PCa, while controlling for potential confounding variables. Among the 8440 participants, 359 cases of PCa were diagnosed. The relationship between BF%, LM, and PCa was nonlinear. In the multivariable logistic regression analysis, there was an independent association between BF% and PCa risk (OR: 1.04, 95% CI: 1.02-1.06), suggesting that higher BF% levels are associated with an increased risk of PCa. Conversely, higher LM levels were associated with a decreased risk of PCa (OR: 0.96, 95% CI: 0.95-0.98). The findings of this study demonstrate a correlation between BF% and LM with PCa, but do not provide direct evidence of a causal relationship. Higher BF% levels are associated with an increased risk of PCa, while higher LM levels are associated with a decreased risk. These results provide valuable insights for understanding and potentially preventing PCa, although further research is needed to fully comprehend the underlying mechanisms.


Assuntos
Tecido Adiposo , Inquéritos Nutricionais , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/epidemiologia , Neoplasias da Próstata/etiologia , Pessoa de Meia-Idade , Estados Unidos/epidemiologia , Fatores de Risco , Índice de Massa Corporal , Idoso , Composição Corporal , Adulto , Modelos Logísticos
2.
Small ; : e2402752, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822717

RESUMO

Surface modification of Cu current collectors (CCs) is proven to be an effective method for protecting lithium metal anodes. However, few studies have focused on the quality and efficiency of modification layers. Herein, a novel home-made filtered cathode vacuum arc (FCVA) co-deposition system with high modification efficiency, good repeatability and environmental friendliness is proposed to realize the wide range regulation of film composition, structure and performance. Through this system, ZnMgTiAl quaternary alloy films, which have good affinity with Li are successfully constructed on Cu CCs, and the fully enhanced electrochemical performances are achieved. Symmetrical cells constructed with modified CCs maintained a fairly low voltage hysteresis of only 13 mV after 2100 h at a current density of 1 mA cm-2. In addition, the capacity retention rate is as high as 75.0% after 100 cycles in the full cells. The influence of alloy films on the dynamic evolution process of constructing stable artificial solid electrolyte interphase (SEI) layer is revealed by in situ infrared (IR) spectroscopy. This work provides a promising route for designing various feasible modification films for LMBs, and it displays better industrial application prospects than the traditional chemical methods owing to the remarkable controllability and scale-up capacity.

3.
Int J Biol Macromol ; 273(Pt 1): 133062, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38862051

RESUMO

Chronic bacterial infections, excessive inflammation, and oxidative stress significantly hinder diabetic wound healing by prolonging the inflammatory phase and complicating the healing process. In this study, phenylboronic acid functionalized dextran (PODP) was developed to encapsulate curcumin, referred to as PODP@Cur. Experimental results indicate that PODP significantly improves the water solubility of curcumin and exhibits synergistic biological activity both in vitro and in vivo. PODP@Cur is capable of accelerating drug release under the pathological microenvironment with ROS accumulation. Furthermore, phenylboronic acid (PBA) has demonstrated potential for targeted bacterial drug delivery, enhancing antibacterial efficacy and trapping free LPS/PGN from dead bacteria to reduce undesirable inflammation. In a diabetic mouse model, PODP@Cur exhibits an excellent antibacterial, anti-inflammatory and antioxidant activities to ultimately promote the efficient and safe wound healing. Due to the specific interaction between PBA and LPS, PODP@Cur could enhance antibacterial activity against bacteria, reduce toxic side effects on normal cells, and alleviate the LPS-mediated pro-inflammatory pathological microenvironment. Therefore, PODP@Cur is capable of being exploited as an efficient and safe candidate for promoting the bacteria-infected diabetic wound healing.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38867426

RESUMO

Atherosclerotic plaques exhibit high cholesterol deposition and oxidative stress resulting from high reactive oxygen species (ROS). These are the major components in plaques and the main pro-inflammatory factor. Therefore, it is crucial to develop an effective therapeutic strategy that can simultaneously address the multiple pro-inflammatory factors via removing cholesterol and inhibiting the overaccumulated ROS. In this study, we constructed macrophage membrane-encapsulated biomimetic nanoparticles (MM@DA-pCD@MTX), which not only alleviate cholesterol deposition at the plaque lesion via reverse cholesterol transport but also scavenge the overaccumulated ROS. ß-Cyclodextrin (ß-CD) and the loaded methotrexate (MTX) act synergistically to induce cholesterol efflux for inhibiting the formation of foam cells. Among them, MTX up-regulated the expression of ABCA1, CYP27A1, and SR-B1. ß-CD increased the solubility of cholesterol crystals. In addition, the ROS scavenging property of dopamine (DA) was perfectly preserved in MM@DA-pCD@MTX, which could scavenge the overaccumulated ROS to alleviate the oxidative stress at the plaque lesion. Last but not least, MM-functionalized "homing" targeting of atherosclerotic plaques not only enables the targeted drug delivery but also prolongs in vivo circulation time and drug half-life. In summary, MM@DA-pCD@MTX emerges as a potent, multifunctional therapeutic platform for AS treatment, offering a high degree of biosafety and efficacy in addressing the complex pathophysiology of atherosclerosis.

5.
Int J Biol Macromol ; 273(Pt 1): 132962, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38848827

RESUMO

The preparation of natural polymer-based highly conductive hydrogels with reliable durability for applications in supercapacitors (SCs) is still challenging. Herein, a facile method to prepare alkaline lignin (AL)-based polypyrrole (PPy)-rich, high-conductive PPy@AL/PEGDGE gel was reported, where AL was used as a dopant, polyethylene glycol diglycidyl ether (PEGDGE) as a cross-linking agent, and PPy as a conducting polymer. The PPy@AL/PEGDGE gel electrode materials with hollow structures were prepared by electrochemical deposition and chemical etching method and then assembled into sandwich-shaped SCs. Cyclic voltammetry (CV), galvanotactic charge discharge (GCD), electrochemical impedance spectroscopy (EIS) and cycling stability tests of the PPy@AL/PEGDGE SCs were performed. The results demonstrated that the SCs can achieve a conductivity of 25.9 S·m-1 and a specific capacitance of 175 F·g-1, which was 127.4 % higher compared to pure PPy (77 F·g-1) electrode. The highest energy density and power density for the SCs were obtained at 23.06 Wh·kg-1 and 5376 W·kg-1, respectively. In addition, the cycling performance was also higher than that of pure PPy assembled SCs (50 %), and the capacitance retention rate can reach 72.3 % after 1000 cycles. The electrode materials are expected to be used as sensor and SCs devices.

6.
Acta Biomater ; 181: 375-390, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734284

RESUMO

Atherosclerosis (AS), a pathological cause of cardiovascular disease, results from endothelial injury, local progressive inflammation, and excessive lipid accumulation. AS plaques rich in foam cells are prone to rupture and form thrombus, which can cause life-threatening complications. Therefore, the assessment of atherosclerotic plaque vulnerability and early intervention are crucial in reducing the mortality rates associated with cardiovascular disease. In this work, A fluorescent probe FC-TPA was synthesized, which switches the fluorescence state between protonated and non-protonated, reducing background fluorescence and enhancing imaging signal-to-noise ratio. On this basis, FC-TPA is loaded into cyclodextrin (CD) modified with phosphatidylserine targeting peptide (PTP) and coated with hyaluronic acid (HA) to construct the intelligent responsive diagnostic nanoplatform (HA@PCFT). HA@PCFT effectively targets atherosclerotic plaques, utilizing dual targeting mechanisms. HA binds strongly to CD44, while PTP binds to phosphatidylserine, enabling nanoparticle aggregation at the lesion site. ROS acts as a smart release switch for probes. Both in vitro and in vivo evaluations confirm impressive lipid-specific fluorescence imaging capabilities of HA@PCFT nanoparticles (NPs). The detection of lipid load in atherosclerotic plaque by fluorescence imaging will aid in assessing the vulnerability of atherosclerotic plaque. STATEMENT OF SIGNIFICANCE: Currently, numerous fluorescent probes have been developed for lipid imaging. However, some challenges including inadequate water solubility, nonspecific distribution patterns, and fluorescence background interference, have greatly limited their further applications in vivo. To overcome these limitations, a fluorescent molecule has been designed and synthesized, thoroughly investigating its photophysical properties through both theoretical and experimental approaches. Interestingly, this fluorescent molecule exhibits the reversible fluorescence switching capabilities, mediated by hydrogen bonds, which effectively mitigate background fluorescence interference. Additionally, the fluorescent molecules has been successfully loaded into nanocarriers functionalized with the active targeting abilities, which has significantly improved the solubility of the fluorescent molecules and reduced their nonspecific distribution in vivo for an efficient target imaging in atherosclerosis. This study provides a valuable reference for evaluating the performance of such fluorescent dyes, and offers a promising perspective on the design of the target delivery systems for atherosclerosis.


Assuntos
Corantes Fluorescentes , Nanopartículas , Placa Aterosclerótica , Espécies Reativas de Oxigênio , Placa Aterosclerótica/diagnóstico por imagem , Animais , Nanopartículas/química , Espécies Reativas de Oxigênio/metabolismo , Corantes Fluorescentes/química , Camundongos , Imagem Óptica/métodos , Ácido Hialurônico/química , Lipídeos/química , Humanos , Células RAW 264.7
7.
Int J Biol Macromol ; 270(Pt 2): 132387, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38759850

RESUMO

Alginate (SA) comprises repeating unis of ß-1, 4 linked ß-D-mannuronic acid (M) and α-L-guloronic acid (G) in varying proportions. The M/G ratio greatly impacts its anti-inflammatory properties in tissue healing wound, as less knowledge reported. This study examined the performances of both SA and SA hydrogel crosslinked with copper ions (SA-Cu) with different M/G ratios are studied. SA with higher M/G ratios stimulated macrophage migration and shifted from M0 to the pro-inflammatory Ml phenotype, while lower M/G ratios shifted from M1 to the pro-repair M2 phenotype. Furthermore, SA-Cu hydrogels with lower M/G ratios exhibited enhanced cross-linking degree, mechanical and rheological properties, as well Cu releasing rate. The reason may be attributed to a relative easy binding between Cu ions and G unit among Cu ions, M unit and G unit. In vitro cell evaluation showed that SA-Cu hydrogel with M/G ratio of 1:1 activated M2 macrophages and up-regulated anti-inflammatory cytokines expression more effectively than those of SA-Cu ratios (2:1) and (1:2). In vivo, SA-Cu hydrogel with M/G ratio of 1:1 expedited diabetic wound healing, accelerating infiltration and phenotype shift of M2 macrophages, and enhancing anti-inflammatory factors, epithelialization and collagen deposition in healing phases. This research highlights the significant role of M/G ratios in SA materials in influencing macrophage behavior and inflammatory responses, which would benefit its application field.


Assuntos
Alginatos , Hidrogéis , Macrófagos , Cicatrização , Cicatrização/efeitos dos fármacos , Alginatos/química , Alginatos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Animais , Camundongos , Hidrogéis/química , Hidrogéis/farmacologia , Células RAW 264.7 , Diabetes Mellitus Experimental , Citocinas/metabolismo , Ácidos Hexurônicos/química , Ácidos Hexurônicos/farmacologia , Cobre/química , Ratos , Masculino , Polaridade Celular/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos
8.
J Fungi (Basel) ; 10(5)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38786673

RESUMO

Phytophthora sojae is a type of pathogenic oomycete that causes Phytophthora root stem rot (PRSR), which can seriously affect the soybean yield and quality. To subvert immunity, P. sojae secretes a large quantity of effectors. However, the molecular mechanisms regulated by most P. sojae effectors, and their host targets remain unexplored. Previous studies have shown that the expression of PsAvh113, an effector secreted by Phytophthora sojae, enhances viral RNA accumulations and symptoms in Nicotiana benthamiana via VIVE assay. In this study, we analyzed RNA-sequencing data based on disease symptoms in N. benthamiana leaves that were either mocked or infiltrated with PVX carrying the empty vector (EV) and PsAvh113. We identified 1769 differentially expressed genes (DEGs) dependent on PsAvh113. Using stricter criteria screening and Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) analysis of DEGs, we found that 38 genes were closely enriched in response to PsAvh113 expression. We selected three genes of N. benthamiana (NbNAC86, NbMyb4, and NbERF114) and found their transcriptional levels significantly upregulated in N. benthamiana infected with PVX carrying PsAvh113. Furthermore, individual silencing of these three genes promoted P. capsici infection, while their overexpression increased resistance to P. capsici in N. benthamiana. Our results show that PsAvh113 interacts with transcription factors NbMyb4 and NbERF114 in vivo. Collectively, these data may help us understand the pathogenic mechanism of effectors and manage PRSR in soybeans.

9.
Cancer Med ; 13(9): e7229, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38698688

RESUMO

AIM: To investigate the relationship between chemoresistance in pancreatic cancer patients receiving postoperative gemcitabine adjuvant therapy and specific clinical/pathological characteristics, as well as its impact on patient prognosis. METHODS: From June 2018 to June 2021, clinical and pathological data of 148 pancreatic cancer patients were collected, and 101 patients were followed up for tumor recurrence/metastasis and survival status. The correlation between chemoresistance and specific clinical/pathological characteristics or patient prognosis was retrospectively analyzed. RESULTS: Of the 148 patients, 78 were in the chemoresistance group and 70 in the non-chemoresistance group. Univariate analysis showed that the development of chemoresistance may be related to patient age, combined diabetes, preoperative CA19-9 level, tumor size, AJCC stage, vascular invasion, and positive lymph node ratio. Furthermore, subsequent multivariate analysis incorporating these variables indicated that tumor size may be a key factor influencing chemoresistance (p < 0.001, OR = 1.584). Log-rank test showed patients in the chemoresistance group had worse overall survival (OS) (HR = 2.102, p = 0.018) and progression free survival (PFS) (HR = 3.208, p = 0.002) than patients in the non-chemoresistance group; and patients with smaller size tumors (diameter ≤3 cm) had significantly better OS (HR = 2.923, p < 0.001) and PFS (HR = 2.930, p = 0.003) than those with larger size tumors (diameter >3 cm). CONCLUSIONS: Patients with pancreatic cancer receiving postoperative gemcitabine adjuvant therapy are more likely to develop chemoresistance when their tumor sizes are larger (diameter >3 cm). Development of chemoresistance exacerbates the prognosis of patients with pancreatic cancer, and larger tumor size is also a risk factor for poor prognosis in these patients.


Assuntos
Antimetabólitos Antineoplásicos , Desoxicitidina , Resistencia a Medicamentos Antineoplásicos , Gencitabina , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/cirurgia , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapêutico , Masculino , Feminino , Quimioterapia Adjuvante/métodos , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Idoso , Antimetabólitos Antineoplásicos/uso terapêutico , Adulto , Recidiva Local de Neoplasia
10.
Nat Commun ; 15(1): 4012, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740774

RESUMO

cGAS activates innate immune responses against cytosolic double-stranded DNA. Here, by determining crystal structures of cGAS at various reaction stages, we report a unifying catalytic mechanism. apo-cGAS assumes an array of inactive conformations and binds NTPs nonproductively. Dimerization-coupled double-stranded DNA-binding then affixes the active site into a rigid lock for productive metal•substrate binding. A web-like network of protein•NTP, intra-NTP, and inter-NTP interactions ensures the stepwise synthesis of 2'-5'/3'-5'-linked cGAMP while discriminating against noncognate NTPs and off-pathway intermediates. One divalent metal is sufficient for productive substrate binding, and capturing the second divalent metal is tightly coupled to nucleotide and linkage specificities, a process which manganese is preferred over magnesium by 100-fold. Additionally, we elucidate how mouse cGAS achieves more stringent NTP and linkage specificities than human cGAS. Together, our results reveal that an adaptable, yet precise lock-and-key-like mechanism underpins cGAS catalysis.


Assuntos
Nucleotídeos Cíclicos , Nucleotidiltransferases , Animais , Humanos , Camundongos , Domínio Catalítico , Cristalografia por Raios X , DNA , Modelos Moleculares , Nucleotídeos Cíclicos/genética , Nucleotídeos Cíclicos/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Ligação Proteica , Especificidade por Substrato
11.
Bioinformatics ; 40(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38715444

RESUMO

MOTIVATION: Exploring potential associations between diseases can help in understanding pathological mechanisms of diseases and facilitating the discovery of candidate biomarkers and drug targets, thereby promoting disease diagnosis and treatment. Some computational methods have been proposed for measuring disease similarity. However, these methods describe diseases without considering their latent multi-molecule regulation and valuable supervision signal, resulting in limited biological interpretability and efficiency to capture association patterns. RESULTS: In this study, we propose a new computational method named DiSMVC. Different from existing predictors, DiSMVC designs a supervised graph collaborative framework to measure disease similarity. Multiple bio-entity associations related to genes and miRNAs are integrated via cross-view graph contrastive learning to extract informative disease representation, and then association pattern joint learning is implemented to compute disease similarity by incorporating phenotype-annotated disease associations. The experimental results show that DiSMVC can draw discriminative characteristics for disease pairs, and outperform other state-of-the-art methods. As a result, DiSMVC is a promising method for predicting disease associations with molecular interpretability. AVAILABILITY AND IMPLEMENTATION: Datasets and source codes are available at https://github.com/Biohang/DiSMVC.


Assuntos
Biologia Computacional , Humanos , Biologia Computacional/métodos , Doença , Algoritmos , MicroRNAs/genética , Software , Aprendizado de Máquina
12.
Viruses ; 16(4)2024 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-38675931

RESUMO

Viruses, as the most prolific entities on Earth, constitute significant ecological groups within freshwater lakes, exerting pivotal ecological roles. In this study, we selected Chaohu Lake, a representative eutrophic freshwater lake in China, as our research site to explore the community distribution, driving mechanisms, and potential ecological functions of diverse viral communities, the intricate virus-host interaction systems, and the overarching influence of viruses on global biogeochemical cycling.


Assuntos
Lagos , Vírus , Lagos/virologia , China , Vírus/classificação , Vírus/genética , Vírus/isolamento & purificação , Ecossistema , Viroma , Filogenia
13.
Soft Robot ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683643

RESUMO

Abstract Active control of the shape of soft robots is challenging. Despite having an infinite number of passive degrees of freedom (DOFs), soft robots typically only have a few actively controllable DOFs, limited by the number of degrees of actuation (DOAs). The complexity of actuators restricts the number of DOAs that can be incorporated into soft robots. Active shape control is further complicated by the buckling of soft robots under compressive forces; this is particularly challenging for compliant continuum robots due to their long aspect ratios. In this study, we show how variable stiffness enables shape control of soft robots by addressing these challenges. Dynamically changing the stiffness of sections along a compliant continuum robot selectively "activates" discrete joints. By changing which joints are activated, the output of a single actuator can be reconfigured to actively control many different joints, thus decoupling the number of controllable DOFs from the number of DOAs. We demonstrate embedded positive pressure layer jamming as a simple method for stiffness change in inflated beam robots, its compatibility with growing robots, and its use as an "activating" technology. We experimentally characterize the stiffness change in a growing inflated beam robot and present finite element models that serve as guides for robot design and fabrication. We fabricate a multisegment everting inflated beam robot and demonstrate how stiffness change is compatible with growth through tip eversion, enables an increase in workspace, and achieves new actuation patterns not possible without stiffening.

14.
J Control Release ; 369: 722-733, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583575

RESUMO

The existence of the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB) greatly limits the application of chemotherapy in glioma. To address this challenge, an optimal drug delivery system must efficiently cross the BBB/BBTB and specifically deliver therapeutic drugs into glioma cells while minimizing systemic toxicity. Here we demonstrated that glucose-regulated protein 78 (GRP78) and dopamine receptor D2 were highly expressed in patient-derived glioma tissues, and dopamine receptors were highly expressed on the BBB. Subsequently, we synthesized a novel "Y"-shaped peptide and compared the effects of different linkers on the receptor affinity and targeting ability of the peptide. A peptide-drug conjugate (pHA-AOHX-VAP-doxorubicin conjugate, pHA-AOHX-VAP-DOX) with a better affinity for glioma cells and higher solubility was derived for glioma treatment. pHA-AOHX-VAP-DOX could cross both BBB and BBTB via dopamine receptor and GRP78 receptor, and finally target glioma cells, significantly prolonging the survival time of nude mice bearing intracranial glioma. Furthermore, pHA-AOHX-VAP-DOX significantly reduced the toxicity of DOX and increased the maximum tolerated dose (MTD). Collectively, this work paves a new avenue for overcoming multiple barriers and effectively delivering chemotherapeutic agents to glioma cells while providing key evidence to identify potential receptors for glioma-targeted drug delivery.


Assuntos
Barreira Hematoencefálica , Neoplasias Encefálicas , Doxorrubicina , Sistemas de Liberação de Medicamentos , Chaperona BiP do Retículo Endoplasmático , Glioma , Camundongos Nus , Peptídeos , Animais , Glioma/tratamento farmacológico , Glioma/metabolismo , Glioma/patologia , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Doxorrubicina/farmacocinética , Humanos , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Peptídeos/química , Peptídeos/administração & dosagem , Barreira Hematoencefálica/metabolismo , Proteínas de Choque Térmico/metabolismo , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/uso terapêutico , Camundongos Endogâmicos BALB C , Receptores de Dopamina D2/metabolismo , Camundongos , Masculino
15.
Adv Healthc Mater ; : e2401113, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38686849

RESUMO

Atherosclerosis (AS) management typically relies on therapeutic drug interventions, but these strategies typically have drawbacks, including poor site specificity, high systemic intake, and undesired side effects. The field of cell membrane camouflaged biomimetic nanomedicine offers the potential to address these challenges thanks to its ability to mimic the natural properties of cell membranes that enable enhanced biocompatibility, prolonged blood circulation, targeted drug delivery, and evasion of immune recognition, ultimately leading to improved therapeutic outcomes and reduced side effects. In this study, a novel biomimetic approach is developed to construct the M1 macrophage membrane-coated nanoprodrug (MM@CD-PBA-RVT) for AS management. The advanced MM@CD-PBA-RVT nanotherapeutics are proved to be effective in inhibiting macrophage phagocytosis and facilitating the cargo delivery to the activated endothelial cells of AS lesion both in vitro and in vivo. Over the 30-day period of nanotherapy, MM@CD-PBA-RVT is capable of significantly inhibiting the progression of AS, while also maintaining a favorable safety profile. In conclusion, the biomimetic MM@CD-PBA-RVT shows promise as feasible drug delivery systems for safe and effective anti-AS applications.

16.
Micromachines (Basel) ; 15(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38542590

RESUMO

Dual-frequency ultrasounds have demonstrated significant potential in augmenting thermal ablation efficiency for tumor treatment. Ensuring proper impedance matching between the dual-frequency transducer and the power amplifier system is imperative for equipment safety. This paper introduces a novel dual-frequency impedance matching network utilizing L-shaped topology and employing a genetic algorithm to compute component values. Implementation involved an adjustable capacitor and inductor network to achieve dual-frequency matching. Subsequently, the acoustic parameters of the dual-frequency HIFU transducer were evaluated before and after matching, and the effects of ultrasound thermal ablation with and without matching were compared. The proposed dual-frequency impedance matching system effectively reduced the standing wave ratio at the two resonance points while enhancing transmission efficiency. Thermal ablation experiments with matching circuits showed improved temperature rise efficiencies at both frequencies, resulting in an expanded ablation zone. The dual-frequency impedance matching method significantly enhances the transmission efficiency of the dual-frequency ultrasound system at two operational frequencies, thereby ensuring equipment safety. It holds promising prospects for application in dual-frequency ultrasound treatment.

17.
Environ Geochem Health ; 46(4): 117, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478119

RESUMO

Continuous exposure to airborne pesticides causes their gradual accumulation in the human body, eventually posing a threat to human health. To the best of our knowledge, risk assessment study of pesticide non-occupational exposure to residents in agricultural areas has not been conducted in China. In this study, air samples (gas and dust) were collected from inside and outside residences of seven households and an area near the field in a grain-growing area (wheat and maize rotation) for eight months, and the pesticides present were examined both qualitatively and quantitatively. Using a 95% confidence interval, 9 out of 16 pesticides were detected, namely acetamiprid, acetochlor, atrazine, flucarbazone-sodium, imidacloprid, methyldisulfuron-methyl, nicosulfuron-methyl, pendimethalin, and beta-cyhalothrin, and their safety was subsequently evaluated. The results showed that the inhalation exposure of households to beta-cyhalothrin exceeded the acceptable range in the first residential, and the excess lifetime cancer risk of acetochlor inhalation exposure in six households and area around the field exceeds 1E-6, which highlights the need to strengthen preventive screening for cancer risk.


Assuntos
Neoplasias , Nitrilas , Praguicidas , Piretrinas , Toluidinas , Humanos , Praguicidas/toxicidade , Praguicidas/análise , Exposição Ambiental/análise , Medição de Risco
18.
Foods ; 13(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38472877

RESUMO

Microplastics have been an emerging threat to filtering species and the ingestion and impacts of microplastics on oysters are a cause for concern. However, much remains unknown about the effects of microplastics on flavor-related biomarkers in oysters. Herein, a laboratory microplastic exposure with concentrations of 1, 10, and 100 mg/L for 15 days was performed to investigate the impacts of microplastics on the flavor parameters of oysters. Exposure to microplastics changed the odor characteristics of oysters. Microplastic exposure had minor effects on the fatty acid composition; however, significant alterations in free amino acids and nucleotides were observed under the 1 and 10 mg/L exposure groups, respectively. The overall results indicated 10 mg/L of microplastic exposure significantly increased the equivalent umami value of oysters. These findings stressed the effects of microplastics on oysters and would be an important reference for the assessment of the potential risks associated with microplastics in marine edible species.

19.
Opt Express ; 32(4): 6409-6422, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439344

RESUMO

In this paper, a novel laser spot tracking algorithm that incorporates the Kalman filter with the continuously adaptive Meanshift algorithm (Cam-Kalm) is proposed and employed in an underwater optical wireless communication (UOWC) system. Since the Kalman filter has the advantage of predicting the state information of the target spot based on its spatial motion features, the proposed algorithm can improve the accuracy and stability of the moving laser spot tracking. A 2 m optical wireless communication experimental system with auto-tracking based on a green laser diode (LD) is built to evaluate the tracking performance of different algorithms. Experimental results verify that the proposed algorithm outperforms conventional tracking algorithms in aspects of tracking accuracy, interference resistance, and response time. With the proposed Cam-Kalm algorithm, the experimental system can establish an effective communication link, while the maximum tracking speed is 20 mm/s given the forward-error-correction (FEC) threshold.

20.
Surgery ; 175(5): 1321-1328, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38429165

RESUMO

BACKGROUND: To investigate the role and mechanism of liver parenchyma transection in accelerating the regeneration of future liver remnants in rats with portal vein ligation (PVL). METHODS: Rats were randomly divided into the PVL group (90% PVL at the caudate lobe, right lobe , left lateral lobe and left median lobe), associating liver partition and portal vein ligation for staged hepatectomy (portal vein ligation with complete liver parenchyma transection [ALPPS]) group (90% PVL with 80 to 90% liver parenchyma transection), PVL + partial liver partition (PLP) group (90% PVL with 30 to 50% liver parenchyma transection), PVL + partition in the ligated lobe (PLL) group (90% PVL with 40 to 60% liver parenchyma transection in the portal vein ligated lobe), PVL + partition in the remnant lobe (PRL) group (90% PVL with 40 to 60% liver parenchyma transection in the remnant lobe), PVL + radiofrequency ablation (RFA) group (90% PVL with splenic ablation) and sham operation (sham) group. The animals were killed at 4 time points of postoperative days 1, 3, 5, and 7. Six rats were killed at each time point, with 24 rats in each group. The weights of the future liver remnant and whole liver were measured. Serum alanine aminotransferase, aspartate aminotransferase, and total bilirubin were analyzed by using an automatic biochemical analyzer. Serum tumor necrosis factor-α, interleukin-6, and hepatocyte growth factor were measured by enzyme-linked immunosorbent assay. The expression of cell proliferating nuclear antigen (Ki67) and phosphorylated histone H3 was detected by immunohistochemistry, and the positive rate was calculated. RESULTS: The ALPPS group displayed the highest FLR weight to body weight ratio compared with that of the other groups (P < .05), and the partial liver split (PVL + PLP) group also displayed higher remnant weight to body weight ratio than the ectopic liver split (PVL + PLL and PVL + PRL) groups (P < .05). During the first 7 days after surgery the cytokine levels of the ALPPS, PVL + PLP, PVL + PLL and PVL + PRL groups were comparable (P > .05). The PVL + PLP, PVL + PLL, PVL + PRL and PVL + RFA groups showed similar necrotic areas in the portal vein ligated lobe (P > .05). A hemodynamic study revealed that a liver split along the demarcation line could further increase the portal pressure of the FLR and both the split site and completeness were associated with portal hemodynamic alternations and liver hypertrophy. Extrahepatic organ injury (eg, spleen ablation) also has a significant impact on portal hemodynamics and liver regeneration. CONCLUSION: Complete liver splitting along the demarcation line induced higher portal vein pressure and more rapid FLR hypertrophy than partial or ectopic liver splitting after PVL. The portal hemodynamic alterations after liver split rather than inflammatory cytokine release may be the major cause of ALPPS-induced rapid liver hypertrophy.


Assuntos
Neoplasias Hepáticas , Veia Porta , Ratos , Animais , Veia Porta/cirurgia , Veia Porta/patologia , Fígado/patologia , Hepatectomia , Regeneração Hepática , Hepatomegalia , Neoplasias Hepáticas/cirurgia , Hipertrofia/patologia , Ligadura , Citocinas , Peso Corporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...