Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Discov ; 9(1): 114, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37019900

RESUMO

Hexokinase 2 (HK2), a critical rate-limiting enzyme in the glycolytic pathway catalyzing hexose phosphorylation, is overexpressed in multiple human cancers and associated with poor clinicopathological features. Drugs targeting aerobic glycolysis regulators, including HK2, are in development. However, the physiological significance of HK2 inhibitors and mechanisms of HK2 inhibition in cancer cells remain largely unclear. Herein, we show that microRNA-let-7b-5p (let-7b-5p) represses HK2 expression by targeting its 3'-untranslated region. By suppressing HK2-mediated aerobic glycolysis, let-7b-5p restrains breast tumor growth and metastasis both in vitro and in vivo. In patients with breast cancer, let-7b-5p expression is significantly downregulated and is negatively correlated with HK2 expression. Our findings indicate that the let-7b-5p/HK2 axis plays a key role in aerobic glycolysis as well as breast tumor proliferation and metastasis, and targeting this axis is a potential therapeutic strategy for breast cancer.

2.
Food Res Int ; 162(Pt A): 112018, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36461242

RESUMO

The myrosinase-glucosinolate system, physicochemical properties, and bacterial community were profiled during fermentation of high hydrostatic pressure (HHP) pretreated brine-pickled radishes; traditionally brine-pickled radishes were utilised as the control. Scanning electron microscopy (SEM) analysis revealed that 300 MPa pretreatment promoted brine infiltration in radish cells and damaged cellular microstructures, which activated the myrosinase-glucosinolate system. The conversion of glucosinolate (GLs) to isothiocyanates (ITC) increased and significantly enhanced the raphasatin and sulforaphene contents of pickled radish. However, 600 MPa pretreatment suppressed myrosinase activity. HHP pretreatment altered the natural radish bacterial communities by reducing the total bacterial and lactic acid bacteria counts. Lactobacillus spp. became the dominant bacterial genus within 15 d of fermentation. However, the destruction of cellular structures by HHP pretreatment also significantly decreased hardness and caused the dissolution of amino acids and TTA into brine. This caused reduced amino acid and TTA contents compared to the control group, as well as decreases in pH. HHP pretreatment suppressed the growth of spoilage bacteria (e.g. Pseudomonas, Staphylococcus, and Shewanella genera). This study provides new insight into the potential applications of HHP treatment in pickling, as it demonstrates that HHP can increase the ITC conversion rate of pickled radish, modify its physiochemical characteristics, and decrease microbial risk. Therefore, HHP is a promising preprocessing technique to be used for pickle manufacturing industry.


Assuntos
Glucosinolatos , Raphanus , Fermentação , Bactérias
3.
Small ; 18(47): e2204613, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36228105

RESUMO

Understanding the mapping relationship between electrochemical characteristics and physicochemical properties of layered LiNi0.80 Co0.15 Al0.05 O2 (NCA) cathodes is important to develop high energy density lithium-ion batteries (LIBs). Combining in situ and ex situ characterization, the effect of the H2-H3 phase transition on the capacity decay and aging mechanism of NCA materials are systematically investigated. With the increase of cut-off voltage, the cathode electrolyte interphase (CEI) on the NCA interface shows an evolutionary path of formation-thickening-rupture. This phenomenon is closely related to the H2-H3 phase transition. The volumetric stresses and strains caused by the H2-H3 phase transition accelerate the formation and expansion of secondary particle microcracks in the electrode material, leading to the growth of interfacial CEI variations. The capacity of the electrode material can decrease even if the material does not experience the H2-H3 phase transition due to the persistence of interfacial side reactions with calendar aging from long cycles. This work opens up a valuable perspective for the study of the mapping relationship between phase transition and electrochemical properties in Ni-rich layered oxide cathodes and provides guidance for developing high capacity and long cycle life LIBs.

4.
Nano Lett ; 22(10): 4115-4123, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35510847

RESUMO

Bioderived molecules have been identified as viable anodes for organic potassium-ion batteries (OPIBs) due to the abundance of the necessary natural resources, their high capacity, and their sustainability. However, the high solubility and the inherent nonconductivity cause serious capacity decay and large voltage hysteresis. Here, the biomass molecule juglone was cross-linked with a carbon nanotube network, coupling and cooperating with sodium alginate binder (J@CNT-SA), and was proposed to inhibit small molecule dissolution via weak intermolecular interactions. The synergistic effect of hydrogen bonding and π-π stacking is proven for its outstanding reversible high capacities (262 mA h g-1 at 0.05 A g-1), and a remarkable long life span with capacity retention of 77% over 5000 cycles. Further in situ Fourier transform infrared spectroscopy (FTIR) was performed to reveal the electrochemical mechanism. The feasibility of juglone as an anode for PIBs paves the way for other natural organic small molecules to be investigated as potential energy storage materials.


Assuntos
Potássio , Eletrodos
5.
J Hazard Mater ; 402: 124023, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33254832

RESUMO

Ionic liquids have attracted much more attentions for its wide application in catalyst, green solvents and carbon precursors. Herein, N/P co-doped porous carbon materials with developed pore structure were facilely prepared from the phosphoric acid protic ionic liquid of arginine (Arg[H2PO4]2) and (NH4)2HPO4. The former acted as the carbon precursor, heteroatom source and mesopore generator, while the latter worked as the activator which had great impact on the pore distribution and microstructure. The porous carbon materials were characterized by SEM, XRD, Raman and N2 adsorption analysis in system, indicating that Arg-2-900 was promising electrode materials for supercapacitors. It exhibited high specific capacitance retention of 94% after 10000 cycles with stable electric double layer capacitors. The assembled symmetrical supercapacitors exhibited a wide voltage window in alkaline electrolyte and neutral aqueous electrolyte, displaying high energy density and power density, respectively. In addition, the solid-state supercapacitors were prepared and showed good flexibility after bending the flexible supercapacitor cell at different angles. The results demonstrated the successful synthesis of N/P co-doped porous carbon materials form Arg[H2PO4]2 and broad application in wearable storage device.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...