Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(19)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37836017

RESUMO

Carbon nanotubes (CNTs) and styrene-butadiene-styrene (SBS) are used as reinforcing modifiers in asphalt sealants due to their excellent properties, which can effectively improve the internal structure of the sealant and enhance its mechanical properties. Based on this background, two SBS/CNT-modified asphalt sealants were identified and selected by the orthogonal experimental method and compared with two commercially available sealants. The softening point, flow value, multi-temperature frequency scan test, and multiple stress creep recovery test were used to study the high-temperature rheological properties and aging resistance of four types of sealants. The overall evaluation shows that the proportion of the sealant compound's preparation material is 1% by weight of CNT doping, 5% by weight of SBS doping, and 5% by weight of furfural-extracted-oil doping. The results show that the addition of SBS and CNTs more significantly improves the fatigue resistance of the sealants. With the CAM model, C1.0S5F5 reflects a better relaxation property, which better avoids secondary cracking after the construction of the sealant. With the Burgers model, C1.0S5F5 shows excellent deformation resistance under heavy traffic conditions. In summary, conventional performance indicators, such as the softening point and flow value of SBS/CNT-modified asphalt sealants, can meet the specification requirements and show good high-temperature stability and anti-aging properties compared to commercially available sealants.

2.
Polymers (Basel) ; 14(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35808602

RESUMO

Crack sealing is an important measure for pavement maintenance. Hot-poured crack sealant is the most utilized material for crack sealing. However, its poor high-temperature and rheological properties seriously weaken the mechanical properties of repaired pavement. Thus, to overcome the disadvantage of the poor high-temperature and rheological properties of sealant, styrene-butadiene-styrene (SBS) and rubber crumb (CR) were utilized for modifying the asphalt-based sealants. Softening point tests, temperature tests, frequency scan tests, and multiple stress creep recovery tests (MSCR) were conducted to evaluate the high-temperature and rheological properties of the modified sealant. Additionally, the influence of SBS and CR on the high-temperature performance of the modified sealant was quantitatively analyzed by the grey relational analysis method. The results reveal that the SBS has a greater enhancement effect on the high-temperature performance of sealant than CR. Increasing the SBS and CR content in the sealant could enhance the sealant's high-temperature performance, stiffness, and elasticity. Compared with asphalt-based sealant and one-component modified asphalt-based sealant, SBS/CR-modified asphalt sealant has greater viscosity and higher temperature deformation resistance. Additionally, SBS can increase the stress level of the sealant, thereby enhancing the resistance of the sealant to permanent deformation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...