Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(24): e2319679121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38830106

RESUMO

Whole-genome duplication (WGD; i.e., polyploidy) and chromosomal rearrangement (i.e., genome shuffling) significantly influence genome structure and organization. Many polyploids show extensive genome shuffling relative to their pre-WGD ancestors. No reference genome is currently available for Platanaceae (Proteales), one of the sister groups to the core eudicots. Moreover, Platanus × acerifolia (London planetree; Platanaceae) is a widely used street tree. Given the pivotal phylogenetic position of Platanus and its 2-y flowering transition, understanding its flowering-time regulatory mechanism has significant evolutionary implications; however, the impact of Platanus genome evolution on flowering-time genes remains unknown. Here, we assembled a high-quality, chromosome-level reference genome for P. × acerifolia using a phylogeny-based subgenome phasing method. Comparative genomic analyses revealed that P. × acerifolia (2n = 42) is an ancient hexaploid with three subgenomes resulting from two sequential WGD events; Platanus does not seem to share any WGD with other Proteales or with core eudicots. Each P. × acerifolia subgenome is highly similar in structure and content to the reconstructed pre-WGD ancestral eudicot genome without chromosomal rearrangements. The P. × acerifolia genome exhibits karyotypic stasis and gene sub-/neo-functionalization and lacks subgenome dominance. The copy number of flowering-time genes in P. × acerifolia has undergone an expansion compared to other noncore eudicots, mainly via the WGD events. Sub-/neo-functionalization of duplicated genes provided the genetic basis underlying the unique flowering-time regulation in P. × acerifolia. The P. × acerifolia reference genome will greatly expand understanding of the evolution of genome organization, genetic diversity, and flowering-time regulation in angiosperms.


Assuntos
Evolução Molecular , Genoma de Planta , Filogenia , Poliploidia , Cromossomos de Plantas/genética , Duplicação Gênica
3.
Mar Drugs ; 22(2)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38393036

RESUMO

Microalgae are considered to be natural producers of bioactive pigments, with the production of pigments from microalgae being a sustainable and economical strategy that promises to alleviate growing demand. Chlorophyll, as the main pigment of photosynthesis, has been widely studied, but its medicinal applications as an antioxidant, antibacterial, and antitumor reagent are still poorly understood. Chlorophyll is the most important pigment in plants and algae, which not only provides food for organisms throughout the biosphere, but also plays an important role in a variety of human and man-made applications. The biological activity of chlorophyll is closely related to its chemical structure; its specific structure offers the possibility for its medicinal applications. This paper reviews the structural and functional roles of microalgal chlorophylls, commonly used extraction methods, and recent advances in medicine, to provide a theoretical basis for the standardization and commercial production and application of chlorophylls.


Assuntos
Microalgas , Humanos , Clorofila/química , Fotossíntese , Antioxidantes/farmacologia , Antioxidantes/química , Plantas
4.
Nucleic Acids Res ; 52(8): 4644-4658, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38375885

RESUMO

Pseudouridine, one of the most abundant RNA modifications, is synthesized by stand-alone or RNA-guided pseudouridine synthases. Here, we comprehensively mapped pseudouridines in rRNAs, tRNAs and small RNAs in the archaeon Sulfolobus islandicus and identified Cbf5-associated H/ACA RNAs. Through genetic deletion and in vitro modification assays, we determined the responsible enzymes for these modifications. The pseudouridylation machinery in S. islandicus consists of the stand-alone enzymes aPus7 and aPus10, and six H/ACA RNA-guided enzymes that account for all identified pseudouridines. These H/ACA RNAs guide the modification of all eleven sites in rRNAs, two sites in tRNAs, and two sites in CRISPR RNAs. One H/ACA RNA shows exceptional versatility by targeting eight different sites. aPus7 and aPus10 are responsible for modifying positions 13, 54 and 55 in tRNAs. We identified four atypical H/ACA RNAs that lack the lower stem and the ACA motif and confirmed their function both in vivo and in vitro. Intriguingly, atypical H/ACA RNAs can be modified by Cbf5 in a guide-independent manner. Our data provide the first global view of pseudouridylation in archaea and reveal unexpected structures, substrates, and activities of archaeal H/ACA RNPs.


Assuntos
Pseudouridina , RNA Arqueal , RNA de Transferência , Sulfolobus , Pseudouridina/metabolismo , Sulfolobus/genética , Sulfolobus/metabolismo , RNA de Transferência/metabolismo , RNA de Transferência/genética , RNA Arqueal/genética , RNA Arqueal/metabolismo , RNA Arqueal/química , RNA Ribossômico/metabolismo , RNA Ribossômico/genética , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Processamento Pós-Transcricional do RNA , RNA Guia de Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas/metabolismo , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo
6.
Sci China Life Sci ; 67(4): 631-644, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38041781

RESUMO

Box C/D RNAs guide the site-specific formation of 2'-O-methylated nucleotides (Nm) of RNAs in eukaryotes and archaea. Although C/D RNAs have been profiled in several archaea, their targets have not been experimentally determined. Here, we mapped Nm in rRNAs, tRNAs, and abundant small RNAs (sRNAs) and profiled C/D RNAs in the crenarchaeon Sulfolobus islandicus. The targets of C/D RNAs were assigned by analysis of base-pairing interactions, in vitro modification assays, and gene deletion experiments, revealing a complicated landscape of C/D RNA-target interactions. C/D RNAs widely use dual antisense elements to target adjacent sites in rRNAs, enhancing modification at weakly bound sites. Two consecutive sites can be guided with the same antisense element upstream of box D or D', a phenomenon known as double-specificity that is exclusive to internal box D' in eukaryotic C/D RNAs. Several C/D RNAs guide modification at a single non-canonical site. This study reveals the global landscape of RNA-guided 2'-O-methylation in an archaeon and unexpected targeting rules employed by C/D RNA.


Assuntos
RNA Arqueal , RNA Guia de Sistemas CRISPR-Cas , Sequência de Bases , RNA Arqueal/genética , Conformação de Ácido Nucleico , RNA Ribossômico/genética
7.
Environ Sci Technol ; 57(51): 21779-21790, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38091466

RESUMO

Arbuscular mycorrhizal (AM) fungi play an important role in organic matter (OM) stabilization in Fe ore tailings for eco-engineered soil formation. However, little has been understood about the AM fungi-derived organic signature and organo-mineral interactions in situ at the submicron scale. In this study, a compartmentalized cultivation system was used to investigate the role of AM fungi in OM formation and stabilization in tailings. Particularly, microspectroscopic analyses including synchrotron-based transmission Fourier transform infrared (FTIR) and scanning transmission X-ray microspectroscopy combined with near-edge X-ray absorption fine structure spectroscopy (STXM-NEXAFS) were employed to characterize the chemical signatures at the AM fungal-mineral and mineral-OM interfaces at the submicron scale. The results indicated that AM fungal mycelia developed well in the tailings and entangled mineral particles for aggregation. AM fungal colonization enhanced N-rich OM stabilization through organo-mineral association. Bulk spectroscopic analysis together with FTIR mapping revealed that fungi-derived lipids, proteins, and carbohydrates were associated with Fe/Si minerals. Furthermore, STXM-NEXAFS analysis revealed that AM fungi-derived aromatic, aliphatic, and carboxylic/amide compounds were heterogeneously distributed and trapped by Fe(II)/Fe(III)-bearing minerals originating from biotite-like minerals weathering. These findings imply that AM fungi can stimulate mineral weathering and provide organic substances to associate with minerals, contributing to OM stabilization and aggregate formation as key processes for eco-engineered soil formation in tailings.


Assuntos
Compostos Férricos , Micorrizas , Compostos Férricos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Síncrotrons , Análise de Fourier , Minerais/química , Solo/química , Ferro
8.
Environ Sci Technol ; 57(51): 21744-21756, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38085882

RESUMO

Mineral weathering and alkaline pH neutralization are prerequisites to the ecoengineering of alkaline Fe-ore tailings into soil-like growth media (i.e., Technosols). These processes can be accelerated by the growth and physiological functions of tolerant sulfur oxidizing bacteria (SOB) in tailings. The present study characterized an indigenous SOB community enriched in the tailings, in response to the addition of elemental sulfur (S0) and organic matter (OM), as well as resultant S0oxidation, pH neutralization, and mineral weathering in a glasshouse experiment. The addition of S0 was found to have stimulated the growth of indigenous SOB, such as acidophilic Alicyclobacillaceae, Bacillaceae, and Hydrogenophilaceae in tailings. The OM amendment favored the growth of heterotrophic/mixotrophic SOB (e.g., class Alphaproteobacteria and Gammaproteobacteria). The resultant S0 oxidation neutralized the alkaline pH and enhanced the weathering of biotite-like minerals and formation of secondary minerals, such as ferrihydrite- and jarosite-like minerals. The improved physicochemical properties and secondary mineral formation facilitated organo-mineral associations that are critical to soil aggregate formation. From these findings, co-amendments of S0 and plant biomass (OM) can be applied to enhance the abundance of the indigenous SOB community in tailings and accelerate mineral weathering and geochemical changes for eco-engineered soil formation, as a sustainable option for rehabilitation of Fe ore tailings.


Assuntos
Compostos de Ferro , Minerais , Bactérias , Enxofre , Oxirredução , Ferro , Solo , Concentração de Íons de Hidrogênio
9.
Shock ; 60(5): 698-706, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37695737

RESUMO

ABSTRACT: Purpose: Intensive care unit-acquired weakness (ICUAW) is a severe neuromuscular complication that frequently occurs in patients with sepsis. The precise molecular pathophysiology of mitochondrial calcium uptake 1 (MICU1) and mitochondrial calcium uniporter (MCU) in ICUAW has not been fully elucidated. Here, we speculate that ICUAW is associated with MICU1:MCU protein ratio-mediated mitochondrial calcium ([Ca 2+ ] m ) uptake dysfunction. Methods: Cecal ligation and perforation (CLP) was performed on C57BL/6J mice to induce sepsis. Sham-operated animals were used as controls. Lipopolysaccharide (LPS) (5 µg/mL) was used to induce inflammation in differentiated C2C12 myoblasts. Compound muscle action potential (CMAP) was detected using a biological signal acquisition system. Grip strength was measured using a grip-strength meter. Skeletal muscle inflammatory factors were detected using ELISA kits. The cross-sectional area (CSA) of the tibialis anterior (TA) muscle was detected by hematoxylin and eosin staining. Cytosolic calcium ([Ca 2+ ] c ) levels were measured using Fluo-4 AM. Adeno-associated virus (AAV) was injected into TA muscles for 4 weeks to overexpress MICU1 prophylactically. A lentivirus was used to infect C2C12 cells to increase MICU1 expression prophylactically. Findings: The results suggest that sepsis induces [Ca 2+ ] m uptake disorder by reducing the MICU1:MCU protein ratio, resulting in skeletal muscle weakness and muscle fiber atrophy. However, MICU1 prophylactic overexpression reversed these effects by increasing the MICU1:MCU protein ratio. Conclusions: ICUAW is associated with impaired [Ca 2+ ] m uptake caused by a decreased MICU1:MCU protein ratio. MICU1 overexpression improves sepsis-induced skeletal muscle weakness and atrophy by ameliorating the [Ca 2+ ] m uptake disorder.


Assuntos
Proteínas de Transporte de Cátions , Sepse , Animais , Camundongos , Atrofia/metabolismo , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Debilidade Muscular/etiologia , Músculo Esquelético/metabolismo , Sepse/metabolismo
10.
Sci Total Environ ; 905: 167289, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37741381

RESUMO

Soil chromium (Cr) contamination has become an environmental problem of global concern. However, the joint effects of combined utilization of biochar and arbuscular mycorrhizal (AM) fungal inoculum, which are considered as two promising remediation strategies of soil heavy metal pollutions, on plant Cr resistance are still poorly understood. In this study, a two-factor pot experiment was conducted to investigate how biochar and AM fungus Rhizophagus irregularis regulate Medicago sativa growth, physiological trait, nutrient and Cr uptake, relevant gene expressions, soil properties, and Cr speciation, independently or synergistically. The results showed that biochar notably decreased AM colonization, while biochar and AM fungus could simultaneously increase plant dry biomass. The greatest growth promotion was observed in mycorrhizal shoots at the highest biochar level (50 g kg-1 soil) by 91 times. Both biochar application and AM fungal inoculation enhanced plant photosynthesis and P nutrition, but the promoting effects of AM fungus on them were significantly greater than that of biochar. In addition, the combined application of biochar and AM fungus dramatically reduced shoot and root Cr concentrations by up to 92 % and 78 %, respectively, compared to the non-amended treatment. Meanwhile, down-regulated expressions were observed for metal chelating-related genes. Furthermore, Cr translocation from roots to shoots was reduced by both two soil amendments. Transcriptional levels of genes involved in reactive oxygen species and proline metabolisms were also regulated by biochar application and AM fungal colonization, leading to alleviation of Cr phytotoxicity. Furthermore, AM fungal inoculation slightly elevated soil pH but decreased plant-available soil P, which was, by contrast, lifted by biochar addition. The combined application reduced soil acid-extractable Cr concentration by 40 %. This study provides new insights into comprehensively understanding of the mechanisms of biochar and AM fungi combination on improving plant Cr tolerance.


Assuntos
Micorrizas , Poluentes do Solo , Micorrizas/fisiologia , Raízes de Plantas/metabolismo , Cromo/toxicidade , Cromo/metabolismo , Medicago sativa , Poluentes do Solo/análise , Solo
11.
New Phytol ; 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37529867

RESUMO

Arbuscular mycorrhizal (AM) fungi play an important role in soil organic matter (SOM) formation and stabilization. Previous studies have emphasized organic compounds produced by AM fungi as persistent binding agents for aggregate formation and SOM storage. This concept overlooks the multiple biogeochemical processes mediated by AM fungal activities, which drive SOM generation, reprocessing, reorganization, and stabilization. Here, we propose an updated conceptual framework to facilitate a mechanistic understanding of the role of AM fungi in SOM dynamics. In this framework, four pathways for AM fungi-mediated SOM dynamics are included: 'Generating', AM fungal exudates and biomass serve as key sources of SOM chemodiversity; 'Reprocessing', hyphosphere microorganisms drive SOM decomposition and resynthesis; 'Reorganizing', AM fungi mediate soil physical changes and influence SOM transport, redistribution, transformation, and storage; and 'Stabilizing', AM fungi drive mineral weathering and organo-mineral interactions for SOM stabilization. Moreover, we discuss the AM fungal role in SOM dynamics at different scales, especially when translating results from small scales to complex larger scales. We believe that working with this conceptual framework can allow a better understanding of AM fungal role in SOM dynamics, therefore facilitating the development of mycorrhiza-based technologies toward soil health and global change mitigation.

12.
Updates Surg ; 75(8): 2365-2375, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37540406

RESUMO

The association of intra-operative mechanical power (MP) with post-operative pulmonary complications (PPCs) has been described before, but it is uncertain whether the potential inherent bias can limit the use of this parameter, particularly in the context of one-lung ventilation. This single-center study aims to investigate the effect of MP during one-lung ventilation (OLV), and the risks of PPCs in patients undergoing thoracoscopic lobectomy. This prospective observational study is being conducted in an academic tertiary hospital in mainland China. Participants diagnosed with lung cancer, and aged 50 to 80 years are eligible. Video-assisted thoracoscopic surgery (VATS) lobectomy is performed for all patients. The primary outcome is the occurrence of PPCs over 5 consecutive days after the surgery, or until discharge from the hospital. Secondary outcomes include the composite conditions of PPCs, in-hospital stay, systematic inflammation tested by blood samples, and changes in aeration compartments in the ventilated lung as assessed by CT scans. We aim to evaluate the association of mean MP and the temporal patterns in the trend of MP during OLV with the occurrence of PPCs. A total of 120 patients will be enrolled in this study. The study protocol has received approval from the Ethics Committee of the affiliated hospital of Southwest Medical University, China (Reference number: KY2022162). The findings will be made available to the funder and researchers via scientific conferences and peer-reviewed publications. This controlled trial was approved by the Ethics Committee of Southwest Medical University(ChiCTR2200062173), and registered in the Chinese Clinical Trial Register website ( http://www.chictr.org.cn/edit.aspx?pid=172533&htm=4 , ChiCTR2200062173). A written consent was obtained from each patient.


Assuntos
Neoplasias Pulmonares , Ventilação Monopulmonar , Humanos , Neoplasias Pulmonares/cirurgia , Estudos Observacionais como Assunto , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Estudos Prospectivos , Cirurgia Torácica Vídeoassistida/efeitos adversos , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais
13.
Environ Sci Technol ; 57(33): 12325-12338, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37574860

RESUMO

Organic matter (OM) formation and stabilization are critical processes in the eco-engineered pedogenesis of Fe ore tailings, but the underlying mechanisms are unclear. The present 12 month microcosm study has adopted nanoscale secondary ion mass spectrometry (NanoSIMS) and synchrotron-based scanning transmission X-ray microscopy (STXM) techniques to investigate OM formation, molecular signature, and stabilization in tailings at micro- and nanometer scales. In this system, microbial processing of exogenous isotopically labeled OM demonstrated that 13C labeled glucose and 13C/15N labeled plant biomass were decomposed, regenerated, and associated with Fe-rich minerals in a heterogeneous pattern in tailings. Particularly, when tailings were amended with plant biomass, the 15N-rich microbially derived OM was generated and bound to minerals to form an internal organo-mineral association, facilitating further OM stabilization. The organo-mineral associations were primarily underpinned by interactions of carboxyl, amide, aromatic, and/or aliphatic groups with weathered mineral products derived from biotite-like minerals in fresh tailings (i.e., with Fe2+ and Fe3+) or with Fe3+ oxyhydroxides in aged tailings. The study revealed microbial OM generation and subsequent organo-mineral association in Fe ore tailings at the submicrometer scale during early stages of eco-engineered pedogenesis, providing a basis for the development of microbial based technologies toward tailings' ecological rehabilitation.


Assuntos
Nitrogênio , Solo , Solo/química , Minerais/química , Biomassa , Ferro
14.
iScience ; 26(7): 107102, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37485366

RESUMO

Ecological engineering of soil formation in tailings is an emerging technology toward sustainable rehabilitation of iron (Fe) ore tailings landscapes worldwide, which requires the formation of well-organized and stable soil aggregates in finely textured tailings. Here, we demonstrate an approach using microbial and rhizosphere processes to progressively drive aggregate formation and development in Fe ore tailings. The aggregates were initially formed through the agglomeration of mineral particles by organic cements derived from microbial decomposition of exogenous organic matter. The aggregate stability was consolidated by colloidal nanosized Fe(III)-Si minerals formed during Fe-bearing primary mineral weathering driven by rhizosphere biogeochemical processes of pioneer plants. From these findings, we proposed a conceptual model for progressive aggregate structure development in the tailings with Fe(III)-Si rich cements as core nuclei. This renewable resource dependent eco-engineering approach opens a sustainable pathway to achieve resilient tailings rehabilitation without resorting to excavating natural soil resources.

15.
bioRxiv ; 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37461504

RESUMO

Cellular longevity is regulated by both genetic and environmental factors. However, the interactions of these factors in the context of aging remain largely unclear. Here, we formulate a mathematical model for dynamic glucose modulation of a core gene circuit in yeast aging, which not only guided the design of pro-longevity interventions, but also revealed the theoretical principles underlying these interventions. We introduce the dynamical systems theory to capture two general means for promoting longevity - the creation of a stable fixed point in the "healthy" state of the cell and the dynamic stabilization of the system around this healthy state through environmental oscillations. Guided by the model, we investigate how both of these can be experimentally realized by dynamically modulating environmental glucose levels. The results establish a paradigm for theoretically analyzing the trajectories and perturbations of aging that can be generalized to aging processes in diverse cell types and organisms.

16.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(3): 552-557, 2023 May.
Artigo em Chinês | MEDLINE | ID: mdl-37248583

RESUMO

Objective: To observe the effect of sepsis on skeletal muscle function and to explore the role of skeletal muscle mitochondrial calcium uptake protein 1 (MICU1). Methods: A total of 40 specific-pathogen-free (SPF) healthy male C57BL/6J mice were randomly assigned to 4 groups, a sham operation group (Sham group, n=8), a sepsis modeling 6 h group (cecal ligation and puncture [CLP]-6 h group, n=10), a sepsis modeling 12 h group (CLP-12 h group, n=10), and a sepsis modeling 24 h group (CLP-24 h, n=12). The sepsis model was established by CLP. Mice in the Sham group only underwent laparotomic exploration of the cecum. Another 20 SPF mice were selected. The tibialis anterior muscle on one side was empty-transfected with adeno-associated virus (AAV) as controls (AAV-C), and the tibialis anterior muscle on the other side was transfected with AAV to enhance MICU1 expression (AAV-M). The mice were randomly assigned to two groups, a sham operation group (AAV-C-Sham and AAV-M-Sham, n=8) and a sepsis model 24 h group (AAV-C-CLP and AAV-M-CLP, n=12). The grip strength and compound muscle action potential (CMAP) of the tibialis anterior muscle were measured in each group at the corresponding time points. The levels of inflammatory factors, including tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6), in the skeletal muscle were measured by ELISA. The morphological changes of skeletal muscle cells were observed through H&E staining. The expression levels of MICU1 and muscle atrophy-related proteins, including muscle RING-finger containing protein 1 (MuRF1) and muscle atrophy Fbox protein (MAFbx), were determined by Western blot. The expression levels of MICU1 mRNA in skeletal muscle were determined by RT-qPCR. Results: Compared with mice in the Sham group, mice in the CLP group showed decreased body weight ( P<0.05); their grip strength decreased with the prolongation of CLP modeling time ( P<0.05); the amplitude of CMAP decreased, showing prolonged duration and latency ( P<0.05); the expression levels of inflammatory factors, including TNF-α and IL-6, in skeletal muscle increased gradually ( P<0.05); the fiber diameter and cross-sectional area of skeletal muscle decreased gradually with the prolongation of modeling time ( P<0.05); the protein expression levels of MuRF1and MAFbx proteins increased gradually ( P<0.05); the expression levels of MICU1 protein and mRNA decreased gradually ( P<0.05). There was no significant difference in all indices between AAV-M-Sham and AAV-C-Sham groups ( P>0.05). Compared with mice in the AAV-C-CLP group, mice in the AAV-M-CLP group showed increased grip strength ( P<0.05); the amplitude of CMAP increased, showing shortened duration and latency ( P <0.05); the fiber diameter and cross-sectional area of skeletal muscle increased ( P<0.05); the expression levels of MuRF1and MAFbx decreased ( P<0.05). Conclusion: Sepsis leads to skeletal muscle dysfunction, which is related to the decrease in mitochondrial MICU1 expression.


Assuntos
Sepse , Fator de Necrose Tumoral alfa , Camundongos , Masculino , Animais , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Cálcio/metabolismo , Camundongos Endogâmicos C57BL , Músculo Esquelético , Sepse/complicações , Sepse/metabolismo , Atrofia Muscular , Proteínas de Ligação ao Cálcio , Proteínas de Transporte da Membrana Mitocondrial/metabolismo
17.
J Environ Manage ; 338: 117837, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37023611

RESUMO

Dealkalization is a prerequisite to converting bauxite residue into non-hazardous materials that can be used for various upcycling applications. Structural alkali (Na+) lodged inside the densely packed aluminosilicate-cages of sodalite, the dominant desilication product from refining alumina, is a common culprit in the persistence of strong alkalinity of bauxite residue. The present study unravelled chemical and mineralogical processes involved in sodalite dealkalization, driven by organic and inorganic acids. These acids have different H+ dissociation coefficients and their anions have different chelation abilities with surface metal atoms of aluminosilicate minerals. The efficacy of sodium removal by exposure to the acids was found not only dependent on the acid strength (pKa), but also on the chelating property of dissociated conjugate anions. Following an initial H+-Na+ exchange, Na+ removal from sodalite was correlated with partial hydrolysis of aluminosilicate network and resultant chelating reactions with acid anions. The selection of organic and inorganic acids whose conjugate bases possess good chelating capability in the pH buffer zone 7-9 (e.g., oxalate or phosphate), would provide significant aid to the dealkalization process. The findings in this study are crucial in understanding the conversion of bauxite residue into a soil-like growth media (technosol) for sustainable mined land rehabilitation.


Assuntos
Óxido de Alumínio , Sódio , Óxido de Alumínio/química , Silicatos de Alumínio , Ânions , Compostos Orgânicos
18.
Sci Total Environ ; 856(Pt 1): 159078, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36179848

RESUMO

The acidophilic sulfur oxidizing bacterium (SOB), Acidithiobacillus ferrooxidans, has been found to stimulate elemental sulfur (S0) oxidation and mineral weathering in alkaline Fe ore tailings. However, A. ferrooxidans growth and activities depend on the pH conditions surrounding their interfaces with minerals. The present study aimed to investigate how pH influences bacterial growth and functions in Fe ore tailings. A simulated aquatic 'homogeneous' incubation system was initially adjusted into acidic (pH 4), neutral (pH 7) and alkaline (pH 9) conditions, which mimicked the microenvironmental conditions of the water-cell-mineral interfaces in the tailings. It was found that A. ferrooxidans grew well and oxidised S0 under the prevailing and initially acidic conditions (pH < 6). These stimulated the weathering of biotite and amphibole-like minerals and the formation of nanosized jarosite and ferrihydrite-like minerals mediated by extracellular polymer substrate (EPS). In contrast, the initially neutral/alkaline pH conditions (i.e., pH > 7) with the presence of the alkaline tailings restricted SOB growth and functions in S0-oxidation and mineral weathering. These findings suggest that it is essential to prime acidic conditions in microenvironments to support SOB growth, activities, and functions toward mineral weathering in tailings, providing critical basis for involving SOB in eco-engineered pedogenesis in tailings.


Assuntos
Minerais , Enxofre , Bactérias , Oxirredução , Ferro , Concentração de Íons de Hidrogênio
19.
Sci China Life Sci ; 66(1): 2-11, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36385591

RESUMO

Polyamines have been discovered for hundreds of years and once considered as a class of phytohormones. Polyamines play critical roles in a range of developmental processes. However, the molecular mechanisms of polyamine signaling pathways remain poorly understood. Here, we measured the contents of main types of polyamines, and found that endogenous level of thermospermine (T-Spm) in Arabidopsis thaliana is comparable to those of classic phytohormones and is significantly lower than those of putrescine (Put), spermidine (Spd), and spermine (Spm). We further found a nodule-like structure around the junction area connecting the shoot and root of the T-Spm biosynthetic mutant acl5 and obtained more than 50 suppressors of acl5nodule structure (san) through suppressor screening. An in-depth study of two san suppressors revealed that NAP57 and NOP56, core components of box H/ACA and C/D snoRNPs, were essential for T-Spm-mediated nodule-like structure formation and plant height. Furthermore, analyses of rRNA modifications showed that the overall levels of pseudouridylation and 2'-O-methylation were compromised in san1 and san2 respectively. Taken together, these results establish a strong genetic relationship between rRNA modification and T-Spm-mediated growth and development, which was previously undiscovered in all organisms.


Assuntos
Arabidopsis , Espermina , Espermina/metabolismo , Arabidopsis/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Poliaminas/metabolismo
20.
Plant Cell ; 34(11): 4173-4190, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36005862

RESUMO

Small nucleolar RNAs (snoRNAs) are noncoding RNAs (ncRNAs) that guide chemical modifications of structural RNAs, which are essential for ribosome assembly and function in eukaryotes. Although numerous snoRNAs have been identified in plants by high-throughput sequencing, the biological functions of most of these snoRNAs remain unclear. Here, we identified box C/D SnoR28.1s as important regulators of plant growth and development by screening a CRISPR/Cas9-generated ncRNA deletion mutant library in Arabidopsis thaliana. Deletion of the SnoR28.1 locus, which contains a cluster of three genes producing SnoR28.1s, resulted in defects in root and shoot growth. SnoR28.1s guide 2'-O-ribose methylation of 25S rRNA at G2396. SnoR28.1s facilitate proper and efficient pre-rRNA processing, as the SnoR28.1 deletion mutants also showed impaired ribosome assembly and function, which may account for the growth defects. SnoR28 contains a 7-bp antisense box, which is required for 2'-O-ribose methylation of 25S rRNA at G2396, and an 8-bp extra box that is complementary to a nearby rRNA methylation site and is partially responsible for methylation of G2396. Both of these motifs are required for proper and efficient pre-rRNA processing. Finally, we show that SnoR28.1s genetically interact with HIDDEN TREASURE2 and NUCLEOLIN1. Our results advance our understanding of the roles of snoRNAs in Arabidopsis.


Assuntos
Arabidopsis , RNA de Plantas , RNA Nucleolar Pequeno , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Ribose/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , Metilação , Processamento Pós-Transcricional do RNA , RNA de Plantas/genética , RNA de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...