Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 476: 134950, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38908183

RESUMO

The amount of waste disposable medical masks (DMMs) and the potential environmental risk increased significantly due to the huge demand of disposable medical surgical masks. In this study, two effective and environmentally friendly processes, supercritical water degradation (SCWD) and subcritical water partial oxidation (SubCWPO), were proposed for the upcycling of DMMs. The optimal conditions for the SCWD process (conversion ratio>98 %) were 410 â„ƒ, 15 min, and 1:5 g/mL. The oil products obtained from the SCWD process were mainly small molecule hydrocarbons (C7-C12) with a content of 86 % and could be recycled as fuel feedstock for gasoline. Alkyl radicals in the SCWD reaction formed double bonds and ring structures through hydrogen capture reactions, ß-scission, and dehydrogenation reactions, and aromatic hydrocarbons were formed by olefin cyclization and cycloalkane dehydrogenation. The introduction of an oxidant (H2O2) to the reaction system could significantly reduce the reaction temperature and shorten the reaction time. At 350 â„ƒ, 15 min, 1:20 g/mL, V(H2O2): V (H2O) of 1:1, the conversion ratio of the SubCWPO process was 88 %, which was higher than that of the SCWD process at 400 â„ƒ (71.49 %). Oil products produced from the SubCWPO process were rich in alcohols and esters, which could be used as raw materials for nonionic surfactant of polyol and fatty acid ester. The abundant hydroxyl radical in the SubCWPO system trapped hydrogen atoms on PP and reacted with the resulting alkyl radical to form alkanols, which was oxidized to form acids. The esterification of acids and alkanols formed high level of esters. The SCWD and SubCWPO processes proposed in this study are believed to be promising strategies for DMMs degradation and the recovery of high value-added hydrocarbons.

2.
J Evol Biol ; 36(1): 280-295, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36196911

RESUMO

Plants often associate with multiple arthropod mutualists. These partners provide important services to their hosts, but multiple interactions can constrain a plant's ability to respond to complex, multivariate selection. Here, we quantified patterns of genetic variance and covariance among rewards for pollination, biotic defence and seed dispersal mutualisms in multiple populations of Turnera ulmifolia to better understand how the genetic architecture of multiple mutualisms might influence their evolution. We phenotyped plants cultivated from 17 Jamaican populations for several mutualism and mating system-related traits. We then fit genetic variance-covariance (G) matrices for the island metapopulation and the five largest individual populations. At the metapopulation level, we observed significant positive genetic correlations among stigma-anther separation, floral nectar production and extrafloral nectar production. These correlations have the potential to significantly constrain or facilitate the evolution of multiple mutualisms in T. ulmifolia and suggest that pollination, seed dispersal and defence mutualisms do not evolve independently. In particular, we found that positive genetic correlations between floral and extrafloral nectar production may help explain their stable coexistence in the face of physiological trade-offs and negative interactions between pollinators and ant bodyguards. Locally, we found only small differences in G among our T. ulmifolia populations, suggesting that geographic variation in G may not shape the evolution of multiple mutualisms.


Assuntos
Néctar de Plantas , Turnera , Animais , Néctar de Plantas/fisiologia , Turnera/fisiologia , Simbiose , Reprodução , Polinização , Plantas , Flores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...