Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7037, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528098

RESUMO

Stereoscopic display technology plays a significant role in industries, such as film, television and autonomous driving. The accuracy of depth estimation is crucial for achieving high-quality and realistic stereoscopic display effects. In addressing the inherent challenges of applying Transformers to depth estimation, the Stereoscopic Pyramid Transformer-Depth (SPT-Depth) is introduced. This method utilizes stepwise downsampling to acquire both shallow and deep semantic information, which are subsequently fused. The training process is divided into fine and coarse convergence stages, employing distinct training strategies and hyperparameters, resulting in a substantial reduction in both training and validation losses. In the training strategy, a shift and scale-invariant mean square error function is employed to compensate for the lack of translational invariance in the Transformers. Additionally, an edge-smoothing function is applied to reduce noise in the depth map, enhancing the model's robustness. The SPT-Depth achieves a global receptive field while effectively reducing time complexity. In comparison with the baseline method, with the New York University Depth V2 (NYU Depth V2) dataset, there is a 10% reduction in Absolute Relative Error (Abs Rel) and a 36% decrease in Root Mean Square Error (RMSE). When compared with the state-of-the-art methods, there is a 17% reduction in RMSE.

2.
Sci Rep ; 14(1): 5868, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467677

RESUMO

Monocular depth estimation has a wide range of applications in the field of autostereoscopic displays, while accuracy and robustness in complex scenes are still a challenge. In this paper, we propose a depth estimation network for autostereoscopic displays, which aims at improving the accuracy of monocular depth estimation by fusing Vision Transformer (ViT) and Convolutional Neural Network (CNN). Our approach feeds the input image as a sequence of visual features into the ViT module and utilizes its global perception capability to extract high-level semantic features of the image. The relationship between the losses is quantified by adding a weight correction module to improve robustness of the model. Experimental evaluation results on several public datasets show that AMENet exhibits higher accuracy and robustness than existing methods in different scenarios and complex conditions. In addition, a detailed experimental analysis was conducted to verify the effectiveness and stability of our method. The accuracy improvement on the KITTI dataset compared to the baseline method is 4.4%. In summary, AMENet is a promising depth estimation method with sufficient high robustness and accuracy for monocular depth estimation tasks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...