Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 11: 684351, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34490085

RESUMO

Breast cancer has surpassed lung cancer as the most commonly diagnosed cancer in women worldwide. Some therapeutic drugs and approaches could cause side effects and weaken the immune system. The combination of conventional therapies and traditional Chinese medicine (TCM) significantly improves treatment efficacy in breast cancer. However, the chemical composition and underlying anti-tumor mechanisms of TCM still need to be investigated. The primary aim of this study is to provide unique insights to screen the natural components for breast cancer therapy using high-throughput transcriptome analysis. Differentially expressed genes were identified based on two conditions: single samples and groups were classified according to their pharmaceutical effect. Subsequently, the sample treated with E. cochinchinensis Lour. generated the most significant DEGs set, including 1,459 DEGs, 805 upregulated and 654 downregulated. Similarly, group 3 treatment contained the most DEGs (414 DEGs, 311 upregulated and 103 downregulated). KEGG pathway analyses showed five significant pathways associated with the inflammatory and metastasis processes in cancer, which include the TNF, IL-17, NF-kappa B, MAPK signaling pathways, and transcriptional misregulation in cancer. Samples were classified into 13 groups based on their pharmaceutical effects. The results of the KEGG pathway analyses remained consistent with signal samples; group 3 presents a high significance. A total of 21 genes were significantly regulated in these five pathways, interestingly, IL6, TNFAIP3, and BRIC3 were enriched on at least two pathways, seven genes (FOSL1, S100A9, CXCL12, ID2, PRS6KA3, AREG, and DUSP6) have been reported as the target biomarkers and even the diagnostic tools in cancer therapy. In addition, weighted correlation network analysis (WGCNA) was used to identify 18 modules. Among them, blue and thistle2 were the most relevant modules. A total of 26 hub genes in blue and thistle2 modules were identified as the hub genes. In conclusion, we screened out three new TCM (R. communis L., E. cochinchinensis Lour., and B. fruticosa) that have the potential to develop natural drugs for breast cancer therapy, and obtained the therapeutic targets.

2.
J Agric Food Chem ; 69(28): 7863-7873, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34236844

RESUMO

Regeneration of epithelia is crucial for maintaining the intestinal barrier and homeostasis. Our previous work showed that exopolysaccharides from Lactobacillus plantarum NCU116 (EPS116) regulated the barrier function and homeostasis of the intestine; however, the relevant mechanisms remain obscure. Therefore, we sought to explore the role of EPS116 in promoting intestinal epithelial regeneration. Our data showed that the administration of EPS116 markedly ameliorated inflammatory bowel disease-related phenotypes and promoted the regeneration of crypts in the colon of colitis mice. The results of immunofluorescence and reverse transcription-quantitative polymerase chain reaction experiments indicated that EPS116 strikingly increased the number of intestinal stem cells (ISCs) and the expression of differentiation markers for goblet cells, enterocytes, and enteroendocrine cells in the mouse colon. Intestinal microbiota analysis showed that EPS116 increased microbial populations associated with intestinal regeneration and glycan metabolism. Therefore, the present study revealed a novel model that EPS116 promoted the intestinal homeostasis through modulating the proliferation and differentiation of ISCs and altering the gut microbiota profile.


Assuntos
Microbioma Gastrointestinal , Lactobacillus plantarum , Animais , Homeostase , Mucosa Intestinal , Intestinos , Camundongos , Camundongos Endogâmicos C57BL , Regeneração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...