Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(28): 32075-32083, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35786868

RESUMO

Polymer-based electrolytes have attracted ever-increasing attention for solid-state batteries due to their excellent flexibility and processability. Among them, poly(vinylidene difluoride) (PVDF)-based electrolytes with high ionic conductivity, wide electrochemical stability window, and good mechanical properties show great potential and have been widely investigated by using different Li salts, solvents, and inorganic fillers. Here, we report the influence of the molecular weight of PVDF itself on the electrochemical properties of the electrolytes by using two kinds of common PVDF polymers, i.e., PVDF 761 and 5130. Our results demonstrate that the electrolyte with a larger molecular weight (PVDF 5130) has a denser structure and lower crystallinity, and thus much better electrochemical performance, than one with a smaller molecular weight (PVDF 761). With PVDF 5130, the LiFePO4-based solid-state cells present a steady cycling performance with a capacity retention of 85% after 1000 cycles at 1 C and 30 °C. The cycle life of the LiCoO2-based solid-state cells is also extended by using PVDF 5130.

2.
Adv Mater ; 34(32): e2202143, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35726177

RESUMO

Solid polymer electrolytes with large ionic conductivity, high ionic transference number, and good interfacial compatibility with electrodes are highly desired for solid-state batteries. However, unwanted polarizations and side reactions occurring in traditional dual-ion polymer conductors hinder their practical applications. Here, single-ion polymer conductors (SIPCs) with exceptional selectivity for Li-ion conduction (Li-ion transference number up to 0.93), high room-temperature ionic conductivity of about 10-4 S cm-1 , and a wide electrochemical stability window (>4.5 V, vs Li/Li+ ) are prepared by precisely regulating the ion-dipole interactions between Li+ and carbonyl/cyano groups. The resulting SIPCs show an excellent electrochemical stability with Li metal during long-term cycling at room temperature and 60 °C. LiFePO4 -based solid-state cells containing the SIPCs exhibit good rate and cycling performance in a wide temperature range from -20 to 90 °C. By the same way of ion-dipole interaction regulation, sodium- and potassium-based SIPCs with both high ionic conductivity and high cationic transference numbers are also prepared. The findings in this work provide guidance for the development of high-performance SIPCs and other metal-ion systems beyond Li+ .

3.
Environ Sci Technol ; 53(5): 2570-2578, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30689944

RESUMO

Nationwide severe air pollution has prompted China to mandate the adoption of ultralow emissions (ULE) control technologies at all of its coal-fired power plants by 2020. This process has accelerated greatly since 2014 and, combined with operational adjustments related to overcapacity, has reduced the emissions of nitrogen oxides (NO x), sulfur dioxide (SO2), and particulate matter (PM). Yet the quantitative understanding of ULE benefits is poor. Using detailed emissions data from 38 units at 17 power plants, corresponding to 10 combinations of ULE technologies representative of the Chinese power sector, we show that emissions factors for NO x, SO2, and PM are up to 1-2 orders of magnitude lower after ULE retrofitting. The effectiveness in cutting emissions shows a large spread across the various ULE technology combinations, providing an opportunity to choose the most efficient, economically viable technology (or a combination of technologies) in the future. The temporal variations in emissions at hourly resolution reveal the effects of power plant load on emissions, an increasingly important factor given that power plants are not operated at full capacity. These data will be useful in efforts to understand the evolving state of air quality in China and can also provide a basis for benchmarking state-of-the-art air pollution control equipment globally.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , China , Carvão Mineral , Material Particulado , Centrais Elétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...