Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 23(11): 10406-10414, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26606936

RESUMO

Surface sediment-associated synthetic pyrethroid insecticides (SPs) are known to pose high risks to the benthic organisms in Chaohu Lake, a shallow lake of Eastern China. However, the pollution status of the lake's tributaries and estuaries is still unknown. The present study was conducted to investigate the occurrence, compositional distribution, and toxicity of 12 currently used SPs in the surface sediments from four important tributaries, as well as in the sediment cores at their estuaries, using GC-MS for quantification. All SPs selected were detectable, with cypermethrin, es/fenvalerate, and permethrin dominant in both surface and core sediments, suggesting that these compounds were extensively applied. Urban samples contained the highest summed concentrations of the 12 SPs analyzed (Σ12SP) in both surface and core sediments compared with rural samples, suggesting that urban areas near aquatic environments posed high risks for SPs. The mean concentration of Σ12SP in surface sediments of each river was generally higher than that found in core sediments from its corresponding estuary, perhaps implying recent increases in SP usage. Surface sediments were significantly dominated by cypermethrin and permethrin, whereas core sediments were dominated by permethrin and es/fenvalerate. The compositional distributions demonstrated a spatial variation for surface sediments because urban sediments generally contained greater percentages of permethrin and cypermethrin, but rural sediments had significant levels of es/fenvalerate and cypermethrin. In all sediment cores, the percentage of permethrin gradually increased, whereas es/fenvalerate tended to decrease, from the bottom sediments to the top, indicating that the former represented fresh input, whereas the latter represented historical residue. Most urban samples would be expected to be highly toxic to benthic organisms due to the residue of SPs based on a calculation of toxic units (TUs) using toxicity data of the amphipod Hyalella azteca. However, low TU values were found for the samples from rural areas. These results indicate that the bottom sediments were exposed to high risk largely by the residual SPs from urban areas. The summed TUs were mostly attributable to cypermethrin, followed by λ-cyhalothrin and es/fenvalerate. Despite permethrin contributing ∼28.7 % of the Σ12SP concentration, it only represented 6.34 % of the summed TUs. Therefore, our results suggest that high levels of urbanization can increase the accumulation of SPs in aquatic environments.


Assuntos
Inseticidas/análise , Piretrinas/análise , Poluentes Químicos da Água/análise , Anfípodes , Animais , China , Monitoramento Ambiental , Poluição Ambiental , Estuários , Sedimentos Geológicos/química , Inseticidas/toxicidade , Lagos/química , Nitrilas , Permetrina , Piretrinas/toxicidade , Rios/química , Urbanização , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...