Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Front Oncol ; 14: 1364266, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38751817

RESUMO

Osteolytic lesions are infrequently observed in adult patients with acute myeloid leukemia (AML). This report details the case of a 66-year-old male patient who presented with myeloid sarcoma (MS), osteolytic lesion and pancytopenia. Effective treatments were delayed due to diagnostic challenges and the rapid progression of the disease. It is essential to consider AML in the differential diagnosis when faced with a patient presenting osteolytic lesions and pancytopenia.

2.
Chemosphere ; 340: 139793, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37572714

RESUMO

Chromium (Cr) is one of the common environmental pollutants, which causes severe health hazards on human health and environmental security. In this study, we characterized two biochars, a raw biochar (RBC) and a Fe-modified biochar (MBC) made from poplar wood chips and determined the effect of the two biochars on remediation of hexavalent chromium (Cr(VI)) in hydroponic system by monitoring Pak choi growth. Results showed the surface area, pore number and pore volume were significantly higher in MBC than in PBC, but the pore size was larger in PBC than in MBC. When compared to the control, low concentrations of Cr(VI) (≤2 mg L-1) promoted the growth and biomass production of Pak choi by 10-78%. In contrast, the high concentrations of Cr(VI) (≥4 mg L-1) showed a significantly reduction of the growth and biomass production of Pak choi by 10-28%. Fe-modified biochar (MBC) had a more significant impact than RBC on the remediation of Cr in the Cr(VI) pollution and improved growth and biomass production of Pak choi to a greater extent. Our study indicated that MBC has a better effect on degrading Cr(VI) pollution. The findings provide scientific basis and reference for the remediation of heavy metals in aquatic ecosystems by using biochar.


Assuntos
Plântula , Poluentes Químicos da Água , Humanos , Hidroponia , Ecossistema , Carvão Vegetal , Cromo , Adsorção
3.
Hematology ; 28(1): 2225345, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37535054

RESUMO

Invasive pulmonary aspergillosis (IPA) is an infectious disease with a high mortality rate due to diagnostic difficulties associated with the lack of a typical clinical presentation and the inadequacy of the available laboratory testing methods. Nanopore targeted sequencing (NTS) is an alternative method of broad-based pathogen discovery, associated with rapid turnaround and high accuracy. This case report presents a patient with IPA and acute promyelocytic leukemia, diagnosed using the NTS method, which detected Aspergillus flavus in the patient's blood and pleural fluid. The patient was treated effectively with antifungal therapy. Early diagnosis of IPA improved long-term patient prognosis and quality of life.


Assuntos
Aspergilose , Aspergilose Pulmonar Invasiva , Leucemia Promielocítica Aguda , Nanoporos , Humanos , Voriconazol/uso terapêutico , Antifúngicos/uso terapêutico , Leucemia Promielocítica Aguda/diagnóstico , Leucemia Promielocítica Aguda/tratamento farmacológico , Qualidade de Vida , Aspergilose/diagnóstico , Aspergilose/tratamento farmacológico , Aspergilose/microbiologia , Aspergillus/genética , Aspergilose Pulmonar Invasiva/diagnóstico , Aspergilose Pulmonar Invasiva/tratamento farmacológico
4.
Anal Bioanal Chem ; 415(20): 4911-4921, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37326832

RESUMO

Traditional methods for detecting antibiotic and mycotoxin residues rely on large-scale instruments, which are expensive and require complex sample pretreatment processes and professional operators. Although aptamer-based electrochemical sensors have the advantages of simplicity, speed, low cost, and high sensitivity, most aptamer-based sensors lack a signal amplification strategy due to their direct use of aptamers as probes, resulting in insufficient sensitivity. To solve the sensitivity problem in the electrochemical detection process, a novel electrochemical sensing strategy was established for ultrasensitive zearalenone (ZEN) detection on the basis of exonuclease I (Exo I) and branched hybridization chain reaction (bHCR) to amplify the signal. The amplification strategy showed excellent analytical performance towards ZEN with a low detection limit at 3.1×10-12 mol/L and a wide linear range from 10-11 to 10-6 mol/L. Importantly, the assay was utilized in the corn powder samples with satisfactory results, holding promising applications in food safety detection and environmental monitoring.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Zearalenona , Zearalenona/análise , Técnicas Eletroquímicas/métodos , Aptâmeros de Nucleotídeos/química , Antibacterianos , Técnicas Biossensoriais/métodos , Limite de Detecção
5.
Anal Methods ; 15(20): 2441-2447, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37157837

RESUMO

Kanamycin is used widely in livestock farming due to its antimicrobial properties and low cost, but has led to antibiotic residues in food, which can damage human health. Therefore, there is an urgent need for convenient technology that can be used to detect kanamycin rapidly. We found that Co3O4 nanoparticles (NPs) possessed peroxidase-like activity that catalyzed the oxidation of 3,3',5,5'-tetramethylbenzidine to change color. Interestingly, a target-specific aptamer could regulate the catalytic activity of Co3O4 NPs and inhibit this effect through aptamer-target binding. On the basis of a colorimetric assay combined with an aptamer-regulatory mechanism, the linear range for quantitative detection of kanamycin was 0.1-30 µM, the minimum limit of detection was 44.2 nM, and the total time needed for detection was 55 min. Moreover, this "aptasensor" displayed excellent selectivity and could be applied to detect KAN in milk samples. Our sensor might have promising applications for kanamycin detection in animal husbandry and agricultural products.


Assuntos
Aptâmeros de Nucleotídeos , Nanopartículas Metálicas , Animais , Humanos , Canamicina/metabolismo , Colorimetria , Nanopartículas Metálicas/química , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Peroxidases
6.
Small ; 19(20): e2207689, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36843277

RESUMO

The controlled pyrolysis of metal/carbon-containing precursors is commonly used for fabricating multifunctional metal/carbon-based catalysts, nevertheless, the inevitable agglomeration of these precursors in pyrolysis is extremely negative for efficient catalysis. This study reports the first example of suppressing the interfacial fusion and agglomeration of metal/carbon-based catalyst in its pyrolysis-involved fabrication process by developing a facile morphology-engineering strategy. Metal-organic framework precursors are chosen as a proof of concept and five Co/N-doped hollow carbons with different morphologies (rhombic dodecahedron, cube, plate, interpenetration twin, and rod) are synthesized via the pyrolysis of their corresponding core-shell ZIF-8@ZIF-67 precursors. It is demonstrated that the interpenetration twin precursor shows the minimum interfacial contact of interparticles due to its partly-concave morphology with abundant facets, which endows it with the best resistibility from interfacial fusion and thus aggregation of interparticles during pyrolysis. Benefiting from its unique anti-aggregated structure with high specific surface area, abundant fully-exposed active sites, and good dispersibility, the resultant 36-facet Co/N-doped hollow carbon exhibit remarkably improved catalytic property for biomass upgrading as compared with its aggregated counterparts. This study highlights the crucial role of engineering morphology to prevent metal/carbon-containing precursors from detrimental agglomeration during pyrolysis, demonstrating a new approach to constructing anti-aggregated metal/carbon-based catalysts.

7.
Chemosphere ; 311(Pt 1): 137041, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36330977

RESUMO

Developing broad-spectrum light reactions, effective charge separation, and easily recoverable photocatalysts were considered cost-effective pollution remediation methods. The ZnFe2O4/BC/ZnO composite was prepared to achieve these objectives, where biochar (BC) was used as a conductive channel and ZnFe2O4 as a magnetic substance. Among them, the 0.6-ZBO composite performed the best, with photocatalytic removal of tetracycline (TC) reaching 85.6%. The photocatalytic degradation rated constant of 0.6-ZBO composite was 23.36 × 10-3 min-1, which was 7.6, 4.1, and 2.5 times higher than that of ZnFe2O4/BC, ZnO, and ZnFe2O4/ZnO samples, respectively. According to several characterization data, it was demonstrated that successful Z-scheme heterojunctions were constructed between ZnFe2O4 and ZnO. The 0.6-ZBO complex increased the range of light absorption and strengthened the separation of electron-hole pairs, thus improving the redox ability of the complex. In the different water matrices, the stability of 0.6-ZBO was excellent and its ability to remove TC decreased slightly to about 11% after 5 cycles. This work provided a valuable approach to design a novel and efficient system for degrading organic pollutants in wastewater using magnetic biochar.


Assuntos
Óxido de Zinco , Catálise , Tetraciclina , Antibacterianos , Luz
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 286: 121953, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36242838

RESUMO

Kanamycin was a group of essential antibiotics generally served in treating infections of animals which leached into the environment residual in food, causing health concerns. Thus, selective and sensitive monitoring of kanamycin was significant for food safety. In this work, split aptamers were used as templates to prepare fluorescent Cu/Ag NCs for detection of kanamycin. According to the impressive affinity of the aptamer to kanamycin, two different detection modes were designed using kanamycin aptamer as a recognition molecule, in which one was to combine split aptamer Apt-1 with Apt-2 to form an entangled DNA as a Cu/Ag NCs template, the other was to associate the normal aptamer after encirclement to form Cu/Ag NCs templates. After the addition of kanamycin, the fluorescence signals of the Cu/Ag NCs synthesized in the two modes were both enhanced, but the approach with split aptamer exhibited a superior observable sensitivity than that of the normal type. The detection range showed a well linear relationship between 80 nM and 10 µM when the emission wavelength was 560 nm, and the detection limit was 13.3 nM. In addition, when streptomycin, oxytetracycline, chloramphenicol and chlortetracycline were involved in the selective interference experiment under the same conditions, the fluorescence intensity of the system performed no significant changes. The results demonstrated that this method possessed favorable specificity and selectivity for the assay of kanamycin, proficiently achieving efficient, rapid and sensitive evaluation of kanamycin in the milk samples.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Animais , Prata , Canamicina , Cobre , DNA , Oligonucleotídeos , Limite de Detecção , Técnicas Biossensoriais/métodos
9.
Front Microbiol ; 13: 964401, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36188000

RESUMO

Photocatalysis, as a novel technique, has been widely used for antibiotic pollution remediation in wastewater. In the processes of degradation and removal of antibiotics, the impact of photocatalysts on microenvironment is very important but remains poorly understood. In the present study, the effect of typical photocatalyst g-C3N4 (Graphitic carbon nitride) on microbial community was investigated in two sediment types (riverbed sediment and pig-farm sediment) polluted by tetracycline (TC) in central southern China. The riverbed sediment and pig farm sediment samples were respectively exposed to g-C3N4 (25, 75, 125 mg⋅kg-1) and TC (60, 120, 180 mg⋅L-1) treatments alone or combination for 30 days, respectively. The bacterial community and antibiotic resistance genes (ARGs) of the treated sediments were analyzed by Illumina sequencing and metagenomic sequencing. Studies had shown that: TC, g-C3N4, and TC/g-C3N4 have significant effects on the changes of microbial communities and components in riverbed sediment, but they do not exist in pig farm sediment. The most alterations of microbial taxa were Acidobacteriota, Actinobacteriota, and Desulfobacterota in riverbed sediment, and Elusimicrobiota in the pig farm sediment under various treatments. Through network analysis, it was found that the distribution of microorganisms in the pig farm sediment is more complex and more stable. The addition of g-C3N4 reduced the absolute abundance of ARGs in the two examined sediments, but not significantly changed their relative abundance of ARGs. The g-C3N4 application was beneficial to the removal of TC residues and to the prevention of the generation and transmission of ARGs in sediments. Our results suggested that g-C3N4 was a suitable photocatalyst with excellent application prospect for the removal of TC residues and the control of ARGs in environment.

10.
Environ Sci Pollut Res Int ; 29(56): 85286-85299, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35793022

RESUMO

Biochar had been widely used to improve the activity of photocatalysts, the biochar-based photocatalysts had more potential for environmental pollution remediation, but their effect on the sediment remained unknown. To understand these, the typical photocatalyst g-C3N4 was modified by biochar to develop g-C3N4/biochar with enhanced photocatalytic ability. Riverbed sediment was exposed to g-C3N4 and g-C3N4/biochar respectively for 30 days, and Illumina sequencing was utilized to examine the changes in the bacterial community in the sediment. The results showed that in riverbed sediment, g-C3N4 exposure had a concentration-dependent effect on the diversity of bacteria, while g-C3N4/biochar exposure had a slight influence on the bacterial diversity and the diversity almost maintained stable with different g-C3N4/biochar concentration. The application of g-C3N4 exhibited an inhibition influence on the growth of Acidobacteria, Gemmatimonadetes, and Rokubacteria in sediment, whose relative abundance increased when g-C3N4 was 25 mg/kg, and then decreased when g-C3N4 beyond this concentration. The presence of g-C3N4/biochar increased the relative abundance of Cyanobacteria in sediment and showed no obvious impact on other dominant phyla. Both g-C3N4 and g-C3N4/biochar could alter the levels of TP, NN, and AN in the sediment, but the magnitude of the changes of these physicochemical factors caused by g-C3N4/biochar was much smaller than those caused by g-C3N4. In addition, the complexity of the bacterial community network was reduced in a high concentration of g-C3N4, while it remained stable with different concentrations of g-C3N4/biochar treatments. Totally, this study demonstrated that, compared to g-C3N4, g-C3N4/biochar was able to maintain the relative stability of the bacterial community in riverbed sediment and mitigate the negative effects of photocatalysts to some extent, making biochar an ecological remediation agent with great potential for application.


Assuntos
Carvão Vegetal , Recuperação e Remediação Ambiental , Carvão Vegetal/farmacologia , Bactérias
11.
J Fluoresc ; 32(5): 1949-1957, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35776261

RESUMO

The determination of pyrophosphate and alkaline phosphatase activity plays a significant role in medical diagnosis. In this work, a label-free "ON-OFF-ON" fluorescence strategy is developed for the analysis of pyrophosphate and alkaline phosphatase activity. Using PolyT single strand DNA as templates to synthesize fluorescent copper nanoparticles, the coordination effect of pyrophosphoric acid on Cu2+ inhibited the generation of fluorescence. Afterwards, the addition of alkaline phosphatase into hydrolyze pyrophosphoric acid resulted in the release of Cu2+, whereby the fluorescence intensity could be recovered. Thereupon enhanced-sensitivity for alkaline phosphatase was obtained (0.1 mU/L), much better than previously reported methods. Meanwhile, it could be performed directly in homogeneous solution, which was very close to the actual activity level of alkaline phosphatase under physiological conditions. Likewise, satisfactory results were also obtained in specificity assessment, which demonstrated its potential application in clinical diagnosis. Notably, a new, sensitive, low-cost, short-time, and high-sensitivity platform for alkaline phosphatase detection was constructed, and the design of biosensor using DNA-templated Copper nanoclusters (CuNCs) was instructed in this study.


Assuntos
Difosfatos , Nanopartículas Metálicas , Fosfatase Alcalina/análise , Fosfatase Alcalina/metabolismo , Cobre/análise , DNA de Cadeia Simples , Corantes Fluorescentes , Espectrometria de Fluorescência/métodos
12.
Front Oncol ; 12: 897479, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651791

RESUMO

Background: This study investigated the high-risk factors associated with the increased vulnerability for subsequent clinical CR-GNB infection in carbapenem-resistant Gram-negative bacteria (CR-GNB)-colonized hematological malignancy (HM) patients and built a statistical model to predict subsequent infection. Method: All adult HM patients with positive rectoanal swabs culture for CR-GNB between January 2018 and June 2020 were prospectively followed to assess for any subsequent CR-GNB infections and to investigate the risk factors and clinical features of subsequent infection. Results: A total of 392 HM patients were enrolled. Of them, 46.7% developed a subsequent clinical CR-GNB infection, with 42 (10.7%) cases of confirmed infection and 141 (36%) cases of clinically diagnosed infection. Klebsiella pneumoniae was the dominant species. The overall mortality rate of patients colonized and infected with CR-GNB was 8.6% and 43.7%. A multivariate analysis showed that remission induction chemotherapy and the duration of agranulocytosis, mucositis, and hypoalbuminemia were significant predictors of subsequent infection after CR-GNB colonization. According to our novel risk-predictive scoring model, the high-risk group were >3 times more likely to develop a subsequent infection in comparison with the low-risk group. Conclusion: Our risk-predictive scoring model can early and accurately predict a subsequent CR-GNB infection in HM patients with CR-GNB colonization. The early administration of CR-GNB-targeted empirical therapy in the high-risk group is strongly recommended to decrease their mortality.

13.
Ecotoxicology ; 31(3): 503-515, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35181861

RESUMO

Photocatalysts have been widely prepared and used in wastewater treatment. Although the influence of photocatalyst application on survival and activity of organisms has been examined, its impact on composition and diversity of microbial community is not fully understood. In this study, the impact of photocatalyst g-C3N4 (Graphitic carbon nitride) on microbial communities in riverbed sediments polluted by antibiotic tetracycline (TC) was investigated. The sediment samples collected from the Xiangjiang River of China were exposed to different concentrations of TC, g-C3N4 and TC/g-C3N4 and the bacterial community were analyzed by Illumina sequencing. The results showed that the dominant bacterial phyla were Acidobacteriota, Proteobacteria, Actinobacteriota, and Chloroflexi in the study site. When compared to the control treatments, the application of TC, g-C3N4 and TC/g-C3N4 exhibited distinguishable effects on bacterial community structure in sediments. The presence of TC had greater influence on bacterial composition, while g-C3N4 and TC/g-C3N4 had less influence on bacteria. The diversity and richness of microorganisms in sediment increased under g-C3N4 application and reached the highest values when g-C3N4 was 75 mg/kg. The photocatalyst g-C3N4 restored bacterial community diversity affected by TC, reduced the TC residues in aquatic environment, and eliminated the side effects of TC application in sediments. Our study indicated that g-C3N4 was an environmentally friendly photocatalyst with lightly negative effects on microbial community in riverbed sediments, and could be used for effective remediation of TC-contaminated environments.


Assuntos
Bactérias , Rios , Antibacterianos/toxicidade , Biodiversidade , Sedimentos Geológicos/química , Rios/química , Tetraciclinas
14.
Front Pharmacol ; 12: 755662, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34759824

RESUMO

Acute myeloid leukemia (AML) cells can evade innate immune killing by modulating natural killer (NK) cells receptors and their cognate ligands in tumor cells, thus it may be possible to restore proper expression of immune receptors or ligands with immune sensitive drugs. Decitabine, as a hypomethylation agent, was approved for the treatment of AML and myelodysplastic syndrome. While clinical responses were contributed by epigenetic effects and the induction of cancer cell apoptosis, decitabine also has immune-mediated anti-tumor effects. After exposure to various concentration of decitabine for 24 h, the primary NK cells (AML-NK cells) cytotoxicity and receptor expression (NKG2D and NKp46) displayed parabola-shaped response, while U-shaped response was seen in cytokine release (IFN-γ and IL-10), and these effects were regulated by ERK and STAT3 phosphorylation level. Furthermore, AML-NK cells function displayed different response when the competitive MEK and STAT3 inhibitors applied respectively. Thus, we could conclude that the different dose of decitabine makes various effects on AML-NK cells function and receptors expression.

15.
Chemosphere ; 284: 131260, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34182280

RESUMO

For highly efficient photocatalytic remediation of organic pollutants, broad-spectrum light response and effective charge separation are two key goals. To achieve these goals, a novel biochar (BC) modified PbMoO4 composite catalyst was successfully synthesized in situ by combining coprecipitation with pyrolysis treatment of poplar sawdust and the technical feasibility of degradation of tetracycline (TC) with compound photocatalyst prepared from recovered agricultural and forestry residues was preliminarily demonstrated. The characterization demonstrated that the presence of BC narrowed the bandgap, enhanced visible light absorption as well as facilitated charge separation. Three composites (with the mass ratio of PbMoO4 to BC = 1:4; 1:1; and 4:1, respectively) displayed higher activity than pure PbMoO4. The results showed that the composite with the PbMoO4 to BC ratio of 1:4 exhibited the best photocatalytic activity, for 150 mg L-1 TC the removal rate was 61.0%, and the rate constant was 8.1 × 10-3 min-1, while the photocatalytic activity of PbMoO4 was 26.0% and 3.9 × 10-3 min-1. The reactions in the presence of radical quenchers indicated that holes (h+) and superoxide radicals (O2-) were the dominant active species for photodegradation. In different water matrices, for 150 mg L-1 TC solution the photocatalytic activity of optimal photocatalyst decreased as follows: ultrapure water > artificial sewage > farm sewage > municipal sewage. Moreover, the catalyst exhibited good stability over five cycles. Therefore, BC doped PbMoO4 provides a useful strategy for improving the photocatalytic ability of PbMoO4-based photocatalysts and offers a promising method for water purification.


Assuntos
Carvão Vegetal , Tetraciclina , Catálise , Luz
16.
Front Immunol ; 12: 599493, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113336

RESUMO

MYC/BCL2/BCL6 triple-hit lymphoma (THL) is an uncommon subset of high-grade B-cell lymphoma with aggressive clinical behavior and poor prognosis. TP53 mutation is an independently poor progonistic indicator in patients with THL, hence novel therapeutic strategies are needed for these patients. CD19-directed chimeric antigen receptor(CAR19)-T cell therapy has shown promising efficacy for relapsed/refractory diffuse large B cell lymphoma (RR DLBCL), but the majority of CAR19-T cell products to date have been manufactured using viral vectors. PiggyBac transposon system, with an inclination to memory T cells, offers a more convenient and economical alternative for transgene delivery. We herein report the first case of triple-hit RR DLBCL with TP53 mutation who was treated with piggyBac-generated CAR19-T cells and accompanied by grade 2 cytokine release syndrome. The patient obtained a complete remission (CR) in the 2nd month post-infusion and demanded maintenance therapy. Whether maintenance therapy is favorable and how to administrate it after CAR-T cell infusion remain controversial. Preclinical studies demonstrated that lenalidomide could enhance antitumor activity of CAR19-T cells. Therefore, we pioneered oral lenalidomide after CAR19-T therapy in the patient from the 4th month, and he discontinued after one cycle due to side effects. The patient has still kept sustained CR for over 24 months. Our case have firstly demonstrated the feasibility, preliminary safety and efficacy of piggyBac-produced CAR19-T cell therapy in triple-hit lymphoma. The innovative combination with lenalidomide warrants further investigation. Our findings shed new light on the possible solutions to improve short-term relapse after CAR19-T cell therapy in RR DLBCL. ChiCTR, number ChiCTR1800018111.


Assuntos
Imunoterapia Adotiva , Lenalidomida/administração & dosagem , Linfoma Difuso de Grandes Células B/terapia , Indução de Remissão , Humanos , Linfoma Difuso de Grandes Células B/imunologia , Linfoma Difuso de Grandes Células B/patologia , Masculino , Pessoa de Meia-Idade , Recidiva
17.
Immunotherapy ; 13(4): 345-357, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33406914

RESUMO

Aim: The aim was to evaluate the efficacy and safety of chimeric antigen receptor T (CAR-T) cell in B-cell non-Hodgkin lymphoma (B-NHL). Materials & methods: A meta-analysis was conducted using eligible clinical trials, which were obtained from electronic medical literature databases. Results: A total of 24 clinical trials with 590 patients were included. The best overall response rate was 66% and complete remission rate was 46%. The incidence rates of cytokine-release syndrome and neurotoxicity (grade ≥ 3) were 9 and 5%, respectively. The various clinical factors were analyzed. Autogenic CAR-T cell may lead to improved efficacy than allogeneic CAR-T cell. CD20 CAR-T cell may show increased efficacy than CD19 CAR-T cell. Conclusion: CAR-T immunotherapy has remarkable efficacy and low toxicity in relapsed/refractory B-NHL.


Assuntos
Imunoterapia Adotiva , Linfoma de Células B/terapia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos CD19/imunologia , Antígenos CD20/imunologia , Ensaios Clínicos como Assunto , Síndrome da Liberação de Citocina/induzido quimicamente , Feminino , Humanos , Imunoterapia Adotiva/efeitos adversos , Linfoma de Células B/imunologia , Masculino , Pessoa de Meia-Idade , Síndromes Neurotóxicas/etiologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/transplante , Resultado do Tratamento , Adulto Jovem
18.
PLoS One ; 15(8): e0237389, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32797116

RESUMO

In the present work, a series of magnetically separable Fe3O4/g-C3N4/MoO3 nanocomposite catalysts were prepared. The as-prepared catalysts were characterized by XRD, EDX, TEM, FT-IR, UV-Vis DRS, TGA, PL, BET and VSM. The photocatalytic activity of photocatalytic materials was evaluated by catalytic degradation of tetracycline solution under visible light irradiation. Furthermore, the influences of weight percent of MoO3 and scavengers of the reactive species on the degradation activity were investigated. The results showed that the Fe3O4/g-C3N4/MoO3 (30%) nanocomposites exhibited highest removal ability for TC, 94% TC was removed during the treatment. Photocatalytic activity of Fe3O4/g-C3N4/MoO3 (30%) was about 6.9, 5, and 19.9-fold higher than those of the MoO3, g-C3N4, and Fe3O4/g-C3N4 samples, respectively. The excellent photocatalytic performance was mainly attributed to the Z-scheme structure formed between MoO3 and g-C3N4, which enhanced the efficient separation of the electron-hole and sufficient utilization charge carriers for generating active radials. The highly improved activity was also partially beneficial from the increase in adsorption of the photocatalysts in visible range due to the combinaion of Fe3O4. Superoxide ions (·O2-) was the primary reactive species for the photocatalytic degradation of TC, as degradation rate were decreased to 6% in solution containing benzoquinone (BQ). Data indicate that the novel Fe3O4/g-C3N4/MoO3 was favorable for the degradation of high concentrations of tetracycline in water.


Assuntos
Óxido Ferroso-Férrico/química , Grafite/química , Molibdênio/química , Nanocompostos/química , Compostos de Nitrogênio/química , Óxidos/química , Processos Fotoquímicos , Tetraciclina/química , Água/química , Catálise , Luz , Imãs/química , Tetraciclina/isolamento & purificação , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação
19.
Sci Rep ; 10(1): 11903, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32681000

RESUMO

Norfloxacin (NOF) is an environmentally harmful and ubiquitous aquatic pollutant with extensive production and application. In this study, a novel composition named carbon-based composite photocatalytic material of zinc oxide and zinc sulphide (ZnO/ZnS@BC) was successfully obtained by the impregnation-roasting method to remove NOF under UV-light. Scanning electron microscopy, X-ray photoelectron spectroscopy, transmission electron microscopy and energy dispersive spectrometer characterised the composition. ZnO/ZnS was successfully decorated on the surface of biochar (BC). The pH, the ZnSO4/PS ratio, and ions and quenchers, were investigated. High removal efficiency was obtained with a pH of 7 and a ZnSO4/PS ratio of 1:1, and the removal ratio of NOF reached 95% within three hours; the adsorption and degradation ratios reached 46% and 49%, respectively. Fe2+ promoted the degradation of NOF, whereas other ions inhibited it, with NO3- showing the strongest inhibitory effect. Three reactive species (tert-butanol, quinone, and ammonium oxala) were identified in the catalytic system. The decreasing order of the contribution of each reactive species was: O2- > ·OH- > h+. Additionally, a recycling experiment demonstrated the stability of the catalyst; the catalytic degradation ratio of NOF reached 78% after five successive runs. Therefore, ZnO/ZnS@BC possessed strong adsorption capacity and high ultraviolet photocatalysis ability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...