Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microsc Microanal ; 29(Supplement_1): 1563-1564, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37613670
2.
Materials (Basel) ; 16(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37629809

RESUMO

A thermal neutron absorber material composed of Al3Hf particles in an aluminum matrix is under development for the Advanced Test Reactor. This metal matrix composite was fabricated via hot pressing of high-purity aluminum and micrometer-size Al3Hf powders at volume fractions of 20.0, 28.4, and 36.5%. Room temperature tensile and hardness testing of unirradiated specimens revealed a linear relationship between volume fraction and strength, while the tensile data showed a strong decrease in elongation between the 20 and 36.5% volume fraction materials. Tensile tests conducted at 200 °C on unirradiated material revealed similar trends. Evaluations were then conducted on specimens irradiated at 66 to 75 °C to four dose levels ranging from approximately 1 to 4 dpa. Tensile properties exhibited the typical increase in strength and decrease in ductility with dose that are common for metallic materials irradiated at ≤0.4Tm. Hardness also increased with neutron dose. The difference in strength between the three different volume fraction materials was roughly constant as the dose increased. Nanoindentation measurements of Al3Hf particles in the 28.4 vol% material showed the expected trend of increased hardness with irradiation dose. Transmission electron microscopy revealed oxygen at the interface between the Al3Hf particles and aluminum matrix in the irradiated material. Scanning electron microscopy of the exterior surface of tensile tested specimens revealed that deformation of the material occurs via plastic deformation of the Al matrix, cracking of the Al3Hf particles, and to a lesser extent, tearing of the matrix away from the particles. The fracture surface of an irradiated 28.4 vol% specimen showed failure by brittle fracture in the particles and ductile tearing of the aluminum matrix with no loss of cohesion between the particles and matrix. The coefficient of thermal expansion decreased upon irradiation, with a maximum change of -6.3% for the annealed irradiated 36.5 vol% specimen.

3.
Data Brief ; 48: 109092, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37020898

RESUMO

This article presents the comprehensive mechanical testing data archive from a neutron irradiation campaign of nuclear structural alloys fabricated by powder metallurgy with hot isostatic pressing (PM-HIP). The irradiation campaign was designed to facilitate a direct comparison of PM-HIP to conventional casting or forging. Five common nuclear structural alloys were included in the campaign: 316L stainless steel, SA508 pressure vessel steel, Grade 91 ferritic steel, and Ni-base alloys 625 and 690. Irradiations were carried out in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) to target doses of 1 and 3 displacements per atom (dpa) at target temperatures of 300 and 400 °C. This article contains the data collected from post-irradiation uniaxial tensile tests following ASTM E8 specifications, fractography of these tensile bars, and nanoindentation. By making this systematic and valuable neutron irradiated mechanical behavior dataset openly available to the nuclear materials research community, researchers may now use this data to populate material performance databases, validate material performance and hardening models, design follow-on experiments, and enable future nuclear code-qualification of PM-HIP techniques.

4.
Sensors (Basel) ; 21(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34833764

RESUMO

Passive monitoring techniques have been used for peak temperature measurements during irradiation tests by exploiting the melting point of well-characterized materials. Recent efforts to expand the capabilities of such peak temperature detection instrumentation include the development and testing of additively manufactured (AM) melt wires. In an effort to demonstrate and benchmark the performance and reliability of AM melt wires, we conducted a study to compare prototypical standard melt wires to an AM melt wire capsule, composed of printed aluminum, zinc, and tin melt wires. The lowest melting-point material used was Sn, with a melting point of approximately 230 °C, Zn melts at approximately 420 °C, and the high melting-point material was aluminum, with an approximate melting point of 660 °C. Through differential scanning calorimetry and furnace testing we show that the performance of our AM melt wire capsule was consistent with that of the standard melt-wire capsule, highlighting a path towards miniaturized peak-temperature sensors for in-pile sensor applications.


Assuntos
Alumínio , Reprodutibilidade dos Testes , Temperatura
5.
Sci Total Environ ; 715: 136883, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32006779

RESUMO

In response to more frequent heatwaves, various regional or national heat-health warning systems (HHWSs) have been developed recently as adaptation measures. A wide range of methodologies have been utilized to issue warnings, as there is no universal definition of "heat event" or "heatwave", nor are there quantified thresholds of human-health tolerance to extreme weather. The performance of these warning systems has rarely been evaluated with actual heat-health data, especially the morbidity data, in regions with severe impact. In this study, we assessed the performance of the Shanghai HHWS based on heat-related illness data collected by the Chinese Center for Disease Control and Prevention (China CDC) and then conducted a comparative analysis among the Shanghai HHWS, the China Meteorological Administration HHWS, the Chinese national standard for heatwave indexes, the heat index adopted by the USA's National Weather Service and the definition suggested by the World Meteorological Organization to understand their potential performance for application in Shanghai and to evaluate the temperature thresholds and different meteorological indices employed. The results show that: 1) during the research period, 50% of heat-related illnesses and 58.2% of heat-related deaths in Shanghai occurred on dates that had no heat warnings; 2) for the current threshold (35 °C), the single metric of temperature outperformed the temperature-duration two-parameter method; 3) different from existing studies, while infants and seniors are deemed as vulnerable population groups to heat, young and middle-aged males were found to suffer more heat-related illnesses in hot weather. More detailed analyses reveal that the performance of heat-health warning systems needs to be evaluated and revised periodically, and warning thresholds utilized must be localized to reflect public tolerance to heat and to address the vulnerability of target population groups. Temperature is the dominant threshold in heat-related morbidity and mortality analysis. While a decrease in the temperature threshold would definitely increase the warning frequency and socioeconomic costs, it might also cause warning fatigue. The trade-off between these two aspects is essential for decision-makers and other stakeholders in HHWS design and improvement.


Assuntos
Transtornos de Estresse por Calor , Temperatura Alta , Tempo (Meteorologia) , China , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Morbidade
6.
Adv Mater Technol ; 5(11)2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33738334

RESUMO

Thermoelectric generators are an environmentally friendly and reliable solid-state energy conversion technology. Flexible and low-cost thermoelectric generators are especially suited to power flexible electronics and sensors using body heat or other ambient heat sources. Bismuth telluride based thermoelectric materials exhibit their best performance near room temperature making them an ideal candidate to power wearable electronics and sensors using body heat. In this report Bi2Te3 thin films are deposited on a flexible polyimide substrate using low-cost and scalable manufacturing methods. The synthesized Bi2Te3 nanocrystals have a thickness of 35 ± 15 nm and a lateral dimension of 692 ± 186 nm. Thin films fabricated from these nanocrystals exhibit a peak power factor of 0.35 mW/m·K2 at 433 K, which is among the highest reported values for flexible thermoelectric films. In order to evaluate the flexibility of the thin films, static and dynamic bending tests were performed while monitoring the change in electrical resistivity. After 1000 bending cycles over a 50mm ROC, the change in electrical resistance of the film was 23%. Using our Bi2Te3 solutions, we demonstrated the ability to print thermoelectric thin films with an aerosol jet printer, highlighting the potential of additive manufacturing techniques for fabricating flexible thermoelectric generators.

7.
Nanoscale ; 5(17): 7872-81, 2013 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-23852446

RESUMO

Cr-doped core-shell iron/iron-oxide nanoparticles (NPs) containing 0, 2, 5, and 8 at.% of Cr dopant were synthesized via a nanocluster deposition system and their structural and magnetic properties were investigated. We observed the formation of a σ-FeCr phase in 2 at.% of Cr doping in core-shell NPs. This is unique since it was reported in the past that the σ-phase forms above 20 at.% of Cr. The large coercive field and exchange bias are ascribed to the antiferromagnetic Cr2O3 layer formed with the Fe-oxide shell, which also acts as a passivation layer to decrease the Fe-oxide shell thickness. The additional σ-phase in the core and/or Cr2O3 in the shell cause the hysteresis loop to appear tight waisted near the zero-field axis. The exchange interaction competes with the dipolar interaction with the increase of σ-FeCr grains in the Fe-core. The interaction reversal has been observed in 8 at.% of Cr. The observed reversal mechanism is confirmed from the Henkel plot and delta M value, and is supported by a theoretical watermelon model based on the core-shell nanostructure system.

8.
Inorg Chem ; 48(14): 6380-90, 2009 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-19530690

RESUMO

The series of ternary polar intermetallics Eu(Zn(1-x)Ge(x))(2) (0 < or = x < or = 1) has been investigated and characterized by powder and single-crystal X-ray diffraction as well as physical property measurements. For 0.50(2) < or = x < 0.75(2), this series shows a homogeneity width of hexagonal AlB(2)-type phases (space group P6/mmm, Pearson symbol hP3) with Zn and Ge atoms statistically distributed in the planar polyanionic 6(3) nets. As the Ge content increases in this range, a decreases from 4.3631(6) A to 4.2358(6) A, while c increases from 4.3014(9) A to 4.5759(9) A, resulting in an increasing c/a ratio. Furthermore, the Zn-Ge bond distance in the hexagonal net drops from 2.5190(3) A to 2.4455(3) A, while the anisotropy of the displacement ellipsoids significantly increases along the c direction. For x < 0.50 and x > 0.75, respectively, orthorhombic KHg(2)-type and trigonal EuGe(2)-type phases occur as a second phase in mixtures with an AlB(2)-type phase. Diffraction of the x = 0.75(2) sample shows incommensurate modulation along the c direction; a structural model in super space group P3m1(00gamma)00s reveals puckered 6(3) nets. Temperature-dependent magnetic susceptibility measurements for two AlB(2)-type compounds show Curie-Weiss behavior above 40.0(2) K and 45.5(2) K with magnetic moments of 7.98(1) mu(B) for Eu(Zn(0.48)Ge(0.52(2)))(2) and 7.96(1) mu(B) for Eu(Zn(0.30)Ge(0.70(2)))(2), respectively, indicating a (4f)(7) electronic configuration for Eu atoms (Eu(2+)). The Zintl-Klemm formalism accounts for the lower limit of Ge content in the AlB(2)-type phases but does not identify the observed upper limit. In a companion paper, the intrinsic relationships among chemical structures, compositions, and electronic structures are analyzed by electronic structure calculations.

9.
Inorg Chem ; 45(26): 10503-19, 2006 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-17173406

RESUMO

Ternary rare-earth iron silicides RE(2-x)Fe4Si(14-y) (RE = Y, Gd-Lu; x approximately equal to 0.8; y approximately equal to 4.1) crystallize in the hexagonal system with a approximately equal to 3.9 A, c approximately equal to 15.3 A, Pearson symbol hP20-4.9. Their structures involve rare-earth silicide planes with approximate compositions of "RE1.2Si1.9" alternating with beta-FeSi2-derived slabs and are part of a growing class of rare-earth/transition-metal/main-group compounds based on rare-earth/main-group element planes interspersed with (distorted) fluorite-type transition-metal/main-group element layers. The rare-earth silicide planes in the crystallographic unit cells show partial occupancies of both the RE and Si sites because of interatomic distance constraints. Transmission electron microscopy reveals a 4a x 4b x c superstructure for these compounds, whereas further X-ray diffraction experiments suggest ordering within the ab planes but disordered stacking along the c direction. A 4a x 4b structural model for the rare-earth silicide plane is proposed, which provides good agreement with the electron microscopy results and creates two distinct Fe environments in a 15:1 ratio. Fe-57 Mössbauer spectra confirm these two different iron environments in the powder samples. Magnetic susceptibilities suggest weak (essentially no) magnetic coupling between rare-earth elements, and resistivity measurements indicate poor metallic behavior with a large residual resistivity at low temperatures, which is consistent with disorder. First-principles electronic-structure calculations on model structures identify a pseudogap in the densities of states for specific valence-electron counts that provides a basis for a useful electron-counting scheme for this class of rare-earth/transition-metal/main-group compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...