Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Nutrients ; 15(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37764856

RESUMO

A high-fat diet (HFD) is a major risk factor for cardiovascular diseases. Many pure compounds have been demonstrated to be effective in treating cardiovascular diseases. In this study, we investigated the alleviating effects of oral ovatodiolide and antcin K (OAK) supplements on HFD-induced cardiovascular dysfunction in apolipoprotein E (ApoE)-knockout mice. Cardiovascular dysfunction was induced in ApoE-knockout mice by feeding them an HFD for 12 weeks. The degree of cardiovascular dysfunction was assessed through echocardiography, hematological and biochemical analyses, and immunofluorescence and immunohistochemical staining. The HFD-fed mice exhibited cardiovascular dysfunction-abnormal blood biochemical index. The arterial wall tissue exhibited the marked deposition of lipids, upregulated expression of vascular cell adhesion molecule-1 and CD36 receptors, and downregulated expression of the ABCA1 receptor. Macrophages isolated from the peritoneal cavity of the mice exhibited increased levels of lipid accumulation, reactive oxygen species, and CD11b expression but reduced mitochondrial membrane potential. The expression of superoxide dismutase 2 was downregulated and that of tumor necrosis factor-α was upregulated in the myocardial tissue. Oral OAK supplements twice a day for 12 weeks significantly mitigated HFD-induced cardiovascular dysfunction in the experimental mice. Oral OAK supplements appear to be a promising strategy for treating HFD-induced cardiovascular dysfunction. The underlying mechanisms may involve the reduction of lipid accumulation in the artery and oxidative stress and inflammation in the cardiovascular tissue.


Assuntos
Doenças Cardiovasculares , Dieta Hiperlipídica , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Estresse Oxidativo , Apolipoproteínas E/genética
2.
Front Pharmacol ; 12: 720018, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512347

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes severe "flu-like" symptoms that can progress to acute respiratory distress syndrome (ARDS), pneumonia, renal failure, and death. From the therapeutic perspective, 3-chymotrypsin-like protein (3CLpro) is a plausible target for direct-acting antiviral agents because of its indispensable role in viral replication. The flavonoid ugonin J (UJ) has been reported to have antioxidative and anti-inflammatory activities. However, the potential of UJ as an antiviral agent remains unexplored. In this study, we investigated the therapeutic activity of UJ against SARS-CoV-2 infection. Importantly, UJ has a distinct inhibitory activity against SARS-CoV-2 3CLpro, compared to luteolin, kaempferol, and isokaempferide. Specifically, UJ blocks the active site of SARS-CoV-2 3CLpro by forming hydrogen bonding and van der Waals interactions with H163, M165 and E166, G143 and C145, Q189, and P168 in subsites S1, S1', S2, and S4, respectively. In addition, UJ forms strong, stable interactions with core pharmacophore anchors of SARS-CoV-2 3CLpro in a computational model. UJ shows consistent anti-inflammatory activity in inflamed human alveolar basal epithelial A549 cells. Furthermore, UJ has a 50% cytotoxic concentration (CC50) and a 50% effective concentration (EC50) values of about 783 and 2.38 µM, respectively, with a selectivity index (SI) value of 329, in SARS-CoV-2-infected Vero E6 cells. Taken together, UJ is a direct-acting antiviral that obstructs the activity of a fundamental protease of SARS-CoV-2, offering the therapeutic potential for SARS-CoV-2 infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...