Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 10(8)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759804

RESUMO

Ultraviolet A light (UV-A, 320-400 nm), which is unblockable by sunscreen, requires careful detection for disease avoidance. In this study, we propose a novel photosensing device capable of detecting UV-A. Cancer-causing UV light can be simultaneously monitored with tiny rapid response sensors for a high carrier transition speed. In our research, a multifunctional ZnO/ZnS nanomaterial hybrid-sprinkled carbon nanotube (CNT) was created for the purpose of fabricating a multipurpose, semiconductorbased application. For our research, ZnO nanorods (NRs) were grown by using a facile hydrothermal method on SiO2 substrate, then vulcanized to form ZnO/ZnS coreshell nanorods, which were sprinkled with carbon nanotubes (CNTs). Results indicate that SiO2/ZnO/ZnS/CNT structures exhibited a stronger conducting current with and without light than those samples without CNTs. Multiple material characterizations of the nanostructures, including of atomic force microscopy (AFM) surface morphology evaluation, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) indicate that CNTs could be successfully spread on top of the ZnO/ZnS coreshell structures. Furthermore, chemical binding properties, material crystallinity, and optical properties were examined by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), and photoluminescence (PL). Owing to their compact size, simple fabrication, and low cost, ZnO/ZnS coreshell NRs/CNT/SiO2-based nanocomposites are promising for future industrial optoelectronic applications.

2.
ACS Appl Mater Interfaces ; 9(13): 11985-11992, 2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28301136

RESUMO

The photoluminescence (PL) and reflectivity characteristics of zinc oxide nanopillars (ZnO-NPs) grown on indium-tin-oxide (ITO)-coated glasses were investigated. The room temperature PL showed bright white-light emission for the undoped ZnO-NPs grown at 600 °C, suggesting the close relation between the optical characteristic and the growth conditions being carried out for obtaining the present ZnO-NPs. The reflectivity of the as-grown ZnO-NPs array was about ∼29% with the wavelength of the incident light ranging from 200 to 1800 nm. Nevertheless, the reflectance reduced significantly to less than 9.9% when a layer of gold (Au) was deposited on ZnO-NPs by sputtering for 5 min, corresponding to more than 65% reduction in Au-coated ZnO-NPs (Au/ZnO-NPs). Moreover, the angle-resolved reflectance measurements on the present Au/ZnO-NPs array show an omnidirectional light-trapping characteristic. These remarkable characteristics, broadband and omnidirectional light-trapping of Au/ZnO-NPs, are attributed to the extended effective optical path of the incident light due to subwavelength scattering resulting from the presence of Au nanoparticles.

3.
ACS Appl Mater Interfaces ; 4(12): 6676-82, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23148729

RESUMO

The structural and optoelectronic properties of ZnO nanopillars (ZnO-NPs) grown on Si substrates by the vapor transport deposition method were investigated. In particular, by varying the deposition duration and hence the morphology of the vertically aligned ZnO-NPs, the resultant field emission characteristics were systematically compared. In addition to identifying the advantageous field emission properties exhibited in the pencil-like ZnO-NPs, we observed that by adhering Au nanoparticles on the surface of the ZnO-NPs the turn-on field and the maximum current density can be drastically improved from 3.15 V/µm and 0.44 mA/cm(2) at 5 V/µm for the best ZnO-NPs to 2.65 V/µm and 2.11 mA/cm(2) at 5 V/µm for Au/ZnO-NPs, respectively. The enhancement of field emission characteristics that resulted from Au-nanoparticle decoration is discussed on the basis of charge-transfer-induced band structure modifications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...